scholarly journals A new finite element for free vibration analysis of stiffened composite plates

2007 ◽  
Vol 29 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Tran Ich Thinh ◽  
Ngo Nhu Khoa

A new 6-noded stiffened triangular plate element for the analysis of stiffened composite plates based on Mindlins deformation plate theory has been developed. The stiffened plate element is a combination of basic triangular element and bar component. The element can accommodate any number of arbitrarily oriented stiffeners and obviates the use of mesh lines along the stiffeners. Free vibration analyses of stiffened laminated plates have been carried out with this element and the results are compared with those published. The finite element results show very good matching with the experimental ones.

2002 ◽  
Vol 02 (02) ◽  
pp. 163-184 ◽  
Author(s):  
A. CHAKRABARTI ◽  
A. H. SHEIKH

A triangular element based on Reddy's higher order shear deformation theory is developed for free vibration analysis of composite plates. In the Reddy's plate theory, the transverse shear stress varies in a parabolic manner across the plate thickness and vanishes at the top and bottom surfaces of the plate. Moreover, it does not involve any additional unknowns. Thus the plate theory is quite simple and elegant. Unfortunately, such an attractive plate theory cannot be exploited as expected in finite element analysis, primarily due to the difficulties in satisfying the inter-element continuity requirement. This has inspired us to develop the present element, which has three corner nodes and three mid-side nodes with the same number of degrees of freedom. To demonstrate the performance of the element, numerical examples of isotropic and composite plates under different situations are solved. The results are compared with the analytical solutions and other published results, which show the accuracy and range of applicability of the proposed element in the problem of vibration analysis.


2018 ◽  
Vol 184 ◽  
pp. 688-697 ◽  
Author(s):  
Moussa Abualnour ◽  
Mohammed Sid Ahmed Houari ◽  
Abdelouahed Tounsi ◽  
El Abbes Adda Bedia ◽  
S.R. Mahmoud

2013 ◽  
Vol 135 (1) ◽  
Author(s):  
H. D. Chalak ◽  
Anupam Chakrabarti ◽  
Mohd. Ashraf Iqbal ◽  
Abdul Hamid Sheikh

Free vibration behavior of laminated soft core sandwich plates with stiff laminated face sheets is investigated using a new C0 finite element (FE) model based on higher order zigzag theory (HOZT) in this paper. The in-plane displacement variations are considered to be cubic for both the face sheets and the core, while the transverse displacement is assumed to vary quadratically within the core and remains constant in the faces beyond the core. The plate theory ensures a shear stress-free condition at the top and bottom surfaces of the plate. Thus, the plate theory has all of the features required for an accurate modeling of laminated sandwich plates. As very few elements based on this plate theory (HOZT) exist and they possess certain disadvantages, an attempt has been made to develop this new element. The nodal field variables are chosen in such a manner to overcome the problem of continuity requirement of the derivatives of transverse displacements, i.e., no need to impose any penalty stiffness in the formulation. A nine node C0 quadratic plate finite element is implemented to model the HOZT for the present analysis. A new C0 element has been utilized to study some interesting problems on free vibration analysis of laminated sandwich plates. Many new results are also presented which should be useful for future research.


Sign in / Sign up

Export Citation Format

Share Document