plate element
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 37)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
pp. 1-33
Author(s):  
Yan Xu ◽  
Yang Caijin ◽  
Weihua Zhang ◽  
Weidong Zhu ◽  
Wei Fan

Abstract A new moving Kirchhoff-Love plate element is developed in this work to accurately and efficiently calculate the dynamic response of vehicle-pavement interaction. Since the vehicle can only affect a small region nearby, the wide pavement is reduced to a small reduced plate area around the vehicle. The vehicle loads moving along an arbitrary trajectory is considered, and the arbitrary Lagrangian-Eulerian method is used here for coordinate conversion. The reduced plate area is spatially discretized using the current moving plate element, where its governing equations are derived using Lagrange's equations. The moving plate element is validated by different plate subjected to moving load cases, where the influences of different factors on reduced plate area length of the RBM model are also investigated. Then a vehicle-pavement interaction case with constant and variable speed is analyzed here. The calculation results from the moving plate element are in good agreement with those from the modal superposition method (MSM), and the calculation time with the moving plate element is only one third of that using the MSM. It is also found that the moving load velocity and ground damping have great influences on reduced plate area length of the RBM. The moving plate element is accurate and more efficient than the MSM in calculating the dynamic response of the vehicle-pavement interaction.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4200
Author(s):  
Junqing Hong ◽  
Chunyan Shen ◽  
Weiqing Liu ◽  
Hai Fang ◽  
Laiyun Yang

Combining the improved C0 plate element using high-order zigzag theories and the beam element degenerated from the plate element, a type of analysis model for the sandwich lattice composite panel was developed. Compared with the actual test results including the mid-span deflections and the surface sheet normal stresses, the outstanding of that method was presented through numeric calculation. The results showed that the model has great potential to become an excellent and highly efficient analysis and design tool for sandwich lattice composite panel to avoid the conventional three-dimension hybrid element model, which usually may lead to the complex program establishment, and the coupling degrees of freedom among the different types of elements.


2021 ◽  
Author(s):  
ERDOGAN MADENCI, ◽  
ATILA BARUT ◽  
NAM PHAN ◽  
ZAFER GURDAL

This study presents an approach based on traditional finite elements and peridynamic unit cell (PDUC) to perform structural analysis of fiber steered composite laminates. Effective material property matrix for each ply in the plate element is computed by employing the PDUC based on the orientation of the fiber path and orthotropic ply properties. Each element defines the unit cell domain if the element shape is rectangular. Otherwise, the rectangle that circumscribes the element defines the domain of the unit cell. The element stiffness matrix is constructed through a traditional finite element implementation. This approach provides an accurate and simple modeling of variable angle tow laminates. It can be readily integrated in commercially available finite element programs.


2021 ◽  
Vol 97 ◽  
pp. 223-236
Author(s):  
Chong-Jun Li ◽  
Ying Zhang ◽  
Yan-Mei Jia ◽  
Juan Chen

2021 ◽  
Author(s):  
Alif Ngimbi Diambu ◽  
Mehmet Çevik

Functionally Graded (FG) materials are recent types of engineering materials Fdeveloped as a solution for applications where a couple of relevant properties of different materials are desired in a single continuous composite structure. In these materials, properties are patterned in a way to insure a gradient and continuous property transition direction-wise. This study is a contribution in the literature among other studies but provides an additional understanding of FG Plate structures vibrational behavior in terms of natural frequencies and modal shapes. For this end, an FG plate is modelized and analyzed using AnsysAPDL. Two boundary conditions (all sides clamped “CCCC” and two parallel sides clamped with two others free “CCFF”) for the same plate element and two power law indices “n” are considered. Results are compared with those in the literature and conclusions are drawn accordingly.


Sign in / Sign up

Export Citation Format

Share Document