Fault Tolerant Interconnection Network Design

2015 ◽  
Vol 33 (4) ◽  
pp. 396-404 ◽  
Author(s):  
S. Rajkumar ◽  
Neeraj Kumar Goyal
1994 ◽  
Vol 33 (8) ◽  
pp. 1457 ◽  
Author(s):  
Khan M. Iftekharuddin ◽  
Mohammad A. Karim

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1066
Author(s):  
Huifeng Zhang ◽  
Xirong Xu ◽  
Qiang Zhang ◽  
Yuansheng Yang

It is known widely that an interconnection network can be denoted by a graph G = ( V , E ) , where V denotes the vertex set and E denotes the edge set. Investigating structures of G is necessary to design a suitable topological structure of interconnection network. One of the critical issues in evaluating an interconnection network is graph embedding, which concerns whether a host graph contains a guest graph as its subgraph. Linear arrays (i.e., paths) and rings (i.e., cycles) are two ordinary guest graphs (or basic networks) for parallel and distributed computation. In the process of large-scale interconnection network operation, it is inevitable that various errors may occur at nodes and edges. It is significant to find an embedding of a guest graph into a host graph where all faulty nodes and edges have been removed. This is named as fault-tolerant embedding. The twisted hypercube-like networks ( T H L N s ) contain several important hypercube variants. This paper is concerned with the fault-tolerant path-embedding of n-dimensional (n-D) T H L N s . Let G n be an n-D T H L N and F be a subset of V ( G n ) ∪ E ( G n ) with | F | ≤ n - 2 . We show that for two different arbitrary correct vertices u and v, there is a faultless path P u v of every length l with 2 n - 1 - 1 ≤ l ≤ 2 n - f v - 1 - α , where α = 0 if vertices u and v form a normal vertex-pair and α = 1 if vertices u and v form a weak vertex-pair in G n - F ( n ≥ 5 ).


1998 ◽  
Vol 09 (01) ◽  
pp. 25-37 ◽  
Author(s):  
THOMAS J. CORTINA ◽  
ZHIWEI XU

We present a family of interconnection networks named the Cube-Of-Rings (COR) networks along with their basic graph-theoretic properties. Aspects of group graph theory are used to show the COR networks are symmetric and optimally fault tolerant. We present a closed-form expression of the diameter and optimal one-to-one routing algorithm for any member of the COR family. We also discuss the suitability of the COR networks as the interconnection network of scalable parallel computers.


Author(s):  
Baijnath Kaushik ◽  
◽  
Navdeep Kaur ◽  
Amit Kumar Kohli ◽  
◽  
...  

The objective of this paper is to present a novelmethod for achievingmaximumreliability in fault-tolerant optimal network design when networks have variable size. Reliability calculation is a most important and critical component when fault-tolerant optimal network design is required. A network must be supplied with certain parameters that guarantee proper functionality and maintainability in worse-case situations. Many alternative methods for measuring reliability have been stated in the literature for optimal network design. Most of these methods, mentioned in the literature for evaluating reliability, may be analytical and simulation-based. These methods provide significant ways for computing reliability when a network has a limited size. Significant computational effort is also required for growing variable-sized networks. A novel neural network method is therefore presented to achieve significant high reliability in fault-tolerant optimal network design in highly growing variable networks. This paper compares simulation-based analytical methods with improved learning rate gradient descent-based neural network methods. Results show that improved optimal network design with maximum reliability is achievable by a novel neural network at a manageable computational cost.


2005 ◽  
Vol 06 (04) ◽  
pp. 361-382 ◽  
Author(s):  
K. V. Arya ◽  
R. K. Ghosh

This paper proposes a technique to modify a Multistage Interconnection Network (MIN) to augment it with fault tolerant capabilities. The augmented MIN is referred to as Enhanced MIN (E-MIN). The technique employed for construction of E-MIN is compared with the two known physical fault tolerance techniques, namely, extra staging and chaining. EMINs are found to be more generic than extra staged networks and less expensive than chained networks. The EMIN realizes all the permutations realizable by the original MIN. The routing strategies under faulty and fault free conditions are shown to be very simple in the case of E-MINs.


Sign in / Sign up

Export Citation Format

Share Document