Dissociating inhibition of return from endogenous orienting of spatial attention: Evidence from detection and discrimination tasks

2006 ◽  
Vol 23 (7) ◽  
pp. 1015-1034 ◽  
Author(s):  
Ana B. Chica ◽  
Juan Lupiáñez ◽  
Paolo Bartolomeo
2017 ◽  
Vol 114 (29) ◽  
pp. 7577-7581 ◽  
Author(s):  
William Saban ◽  
Liora Sekely ◽  
Raymond M. Klein ◽  
Shai Gabay

The literature has long emphasized the neocortex’s role in volitional processes. In this work, we examined endogenous orienting in an evolutionarily older species, the archer fish, which lacks neocortex-like cells. We used Posner’s classic endogenous cuing task, in which a centrally presented, spatially informative cue is followed by a target. The fish responded to the target by shooting a stream of water at it. Interestingly, the fish demonstrated a human-like “volitional” facilitation effect: their reaction times to targets that appeared on the side indicated by the precue were faster than their reaction times to targets on the opposite side. The fish also exhibited inhibition of return, an aftermath of orienting that commonly emerges only in reflexive orienting tasks in human participants. We believe that this pattern demonstrates the acquisition of an arbitrary connection between spatial orienting and a nonspatial feature of a centrally presented stimulus in nonprimate species. In the literature on human attention, orienting in response to such contingencies has been strongly associated with volitional control. We discuss the implications of these results for the evolution of orienting, and for the study of volitional processes in all species, including humans.


2019 ◽  
Vol 50 (5) ◽  
pp. 2893-2904 ◽  
Author(s):  
Stefano Lasaponara ◽  
Gianfranco Fortunato ◽  
Alessio Dragone ◽  
Michele Pellegrino ◽  
Fabio Marson ◽  
...  

Perception ◽  
2016 ◽  
Vol 46 (1) ◽  
pp. 6-17 ◽  
Author(s):  
N. Van der Stoep ◽  
S. Van der Stigchel ◽  
T. C. W. Nijboer ◽  
C. Spence

Multisensory integration (MSI) and exogenous spatial attention can both speedup responses to perceptual events. Recently, it has been shown that audiovisual integration at exogenously attended locations is reduced relative to unattended locations. This effect was observed at short cue-target intervals (200–250 ms). At longer intervals, however, the initial benefits of exogenous shifts of spatial attention at the cued location are often replaced by response time (RT) costs (also known as Inhibition of Return, IOR). Given these opposing cueing effects at shorter versus longer intervals, we decided to investigate whether MSI would also be affected by IOR. Uninformative exogenous visual spatial cues were presented between 350 and 450 ms prior to the onset of auditory, visual, and audiovisual targets. As expected, IOR was observed for visual targets (invalid cue RT < valid cue RT). For auditory and audiovisual targets, neither IOR nor any spatial cueing effects were observed. The amount of relative multisensory response enhancement and race model inequality violation was larger for uncued as compared with cued locations indicating that IOR reduces MSI. The results are discussed in the context of changes in unisensory signal strength at cued as compared with uncued locations.


2004 ◽  
Vol 92 (3) ◽  
pp. 1728-1737 ◽  
Author(s):  
Jillian H. Fecteau ◽  
Andrew H. Bell ◽  
Douglas P. Munoz

How do stimuli in the environment interact with the goals of observers? We addressed this question by showing that the relevance of an abruptly appearing visual object (cue) changes how observers orient attention toward a subsequent object (target) and how this target is represented in the activity of neurons in the superior colliculus. Initially after the appearance of the cue, attention is driven to its locus. This capture of attention is followed by a second bias in orienting attention, where observers preferentially orient to new locations in the visual scene—an effect called inhibition of return. In the superior colliculus, these two automatic biases in orienting attention were associated with changes in neural activity linked to the appearance of the target—relatively stronger activity linked to the capture of attention and weaker activity linked to inhibition of return. This behavioral pattern changes when the cue predicts the upcoming location of the target—the benefit associated with the capture of attention is enhanced and inhibition of return is reduced. These goal-driven changes in behavior were associated with an increase in pretarget- and target-related activity. Taken together, the goals of observers modify stimulus-driven changes in neural activity with both signals represented in the salience maps of the superior colliculi.


10.1038/15977 ◽  
1999 ◽  
Vol 2 (12) ◽  
pp. 1053-1054 ◽  
Author(s):  
Ayelet Sapir ◽  
Nachum Soroker ◽  
Andrea Berger ◽  
Avishai Henik

2017 ◽  
Vol 29 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Kamila Śmigasiewicz ◽  
Gabriel Sami Hasan ◽  
Rolf Verleger

In dynamically changing environments, spatial attention is not equally distributed across the visual field. For instance, when two streams of stimuli are presented left and right, the second target (T2) is better identified in the left visual field (LVF) than in the right visual field (RVF). Recently, it has been shown that this bias is related to weaker stimulus-driven orienting of attention toward the RVF: The RVF disadvantage was reduced with salient task-irrelevant valid cues and increased with invalid cues. Here we studied if also endogenous orienting of attention may compensate for this unequal distribution of stimulus-driven attention. Explicit information was provided about the location of T1 and T2. Effectiveness of the cue manipulation was confirmed by EEG measures: decreasing alpha power before stream onset with informative cues, earlier latencies of potentials evoked by T1-preceding distractors at the right than at the left hemisphere when T1 was cued left, and decreasing T1- and T2-evoked N2pc amplitudes with informative cues. Importantly, informative cues reduced (though did not completely abolish) the LVF advantage, indicated by improved identification of right T2, and reflected by earlier N2pc latency evoked by right T2 and larger decrease in alpha power after cues indicating right T2. Overall, these results suggest that endogenously driven attention facilitates stimulus-driven orienting of attention toward the RVF, thereby partially overcoming the basic LVF bias in spatial attention.


Vision ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 17 ◽  
Author(s):  
Soazig Casteau ◽  
Daniel T. Smith

The idea that covert mental processes such as spatial attention are fundamentally dependent on systems that control overt movements of the eyes has had a profound influence on theoretical models of spatial attention. However, theories such as Klein’s Oculomotor Readiness Hypothesis (OMRH) and Rizzolatti’s Premotor Theory have not gone unchallenged. We previously argued that although OMRH/Premotor theory is inadequate to explain pre-saccadic attention and endogenous covert orienting, it may still be tenable as a theory of exogenous covert orienting. In this article we briefly reiterate the key lines of argument for and against OMRH/Premotor theory, then evaluate the Oculomotor Readiness account of Exogenous Orienting (OREO) with respect to more recent empirical data. These studies broadly confirm the importance of oculomotor preparation for covert, exogenous attention. We explain this relationship in terms of reciprocal links between parietal ‘priority maps’ and the midbrain oculomotor centres that translate priority-related activation into potential saccade endpoints. We conclude that the OMRH/Premotor theory hypothesis is false for covert, endogenous orienting but remains tenable as an explanation for covert, exogenous orienting.


Sign in / Sign up

Export Citation Format

Share Document