scholarly journals Direct electrical stimulation of the left frontal aslant tract disrupts sentence planning without affecting articulation

2019 ◽  
Vol 36 (3-4) ◽  
pp. 178-192 ◽  
Author(s):  
Benjamin L. Chernoff ◽  
Max H. Sims ◽  
Susan O. Smith ◽  
Webster H. Pilcher ◽  
Bradford Z. Mahon
1982 ◽  
Vol 75 (3) ◽  
pp. 589-599 ◽  
Author(s):  
M.Mazher Jaweed ◽  
Gerald J. Herbison ◽  
John F. Ditunno

2014 ◽  
Vol 37 (3) ◽  
pp. 527-533 ◽  
Author(s):  
Andrej Šteňo ◽  
Vladimír Hollý ◽  
Martin Fabian ◽  
Matúš Kuniak ◽  
Gabriela Timárová ◽  
...  

2018 ◽  
Vol 15 (2) ◽  
pp. 026015 ◽  
Author(s):  
Leah Muller ◽  
John D Rolston ◽  
Neal P Fox ◽  
Robert Knowlton ◽  
Vikram R Rao ◽  
...  

1993 ◽  
Vol 264 (3) ◽  
pp. G486-G491 ◽  
Author(s):  
G. Tougas ◽  
P. Hudoba ◽  
D. Fitzpatrick ◽  
R. H. Hunt ◽  
A. R. Upton

Cerebral evoked responses following direct electrical stimulation of the vagus and esophagus were compared in 8 epileptic subjects and with those recorded after esophageal stimulation in 12 healthy nonepileptic controls. Direct vagal stimulation was performed using a left cervical vagal pacemaker, which is used in the treatment of epilepsy. Esophageal stimulation was obtained with the use of an esophageal assembly incorporating two electrodes positioned 5 and 20 cm orad to the lower esophageal sphincter. Evoked potential responses were recorded with the use of 20 scalp electrodes. The evoked potential responses consisted of three distinct negative peaks and were similar with the use of either vagal or esophageal stimulation. The measured conduction velocity of the afferent response was 7.5 m/s in epileptic subjects and 10 m/s in healthy controls, suggesting that afferent conduction is through A delta-fibers rather than slower C afferent fibers. We conclude that the cortical-evoked potential responses following esophageal electrical stimulation are comparable to direct electrical stimulation of the vagus nerve and involve mostly A delta-fibers. This approach provides a method for the assessment of vagal afferent gastrointestinal sensory pathways in health and disease.


Sign in / Sign up

Export Citation Format

Share Document