gamma activity
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 149)

H-INDEX

46
(FIVE YEARS 4)

2021 ◽  
pp. 1-19
Author(s):  
Wim Strijbosch ◽  
Edward A. Vessel ◽  
Dominik Welke ◽  
Ondrej Mitas ◽  
John Gelissen ◽  
...  

Abstract Aesthetic experiences have an influence on many aspects of life. Interest in the neural basis of aesthetic experiences has grown rapidly in the past decade, and fMRI studies have identified several brain systems supporting aesthetic experiences. Work on the rapid neuronal dynamics of aesthetic experience, however, is relatively scarce. This study adds to this field by investigating the experience of being aesthetically moved by means of ERP and time–frequency analysis. Participants' electroencephalography (EEG) was recorded while they viewed a diverse set of artworks and evaluated the extent to which these artworks moved them. Results show that being aesthetically moved is associated with a sustained increase in gamma activity over centroparietal regions. In addition, alpha power over right frontocentral regions was reduced in high- and low-moving images, compared to artworks given intermediate ratings. We interpret the gamma effect as an indication for sustained savoring processes for aesthetically moving artworks compared to aesthetically less-moving artworks. The alpha effect is interpreted as an indication of increased attention for aesthetically salient images. In contrast to previous works, we observed no significant effects in any of the established ERP components, but we did observe effects at latencies longer than 1 sec. We conclude that EEG time–frequency analysis provides useful information on the neuronal dynamics of aesthetic experience.


2021 ◽  
Author(s):  
Hadi Choubdar ◽  
Mahdi Mahdavi ◽  
Zahra Rostami ◽  
Erfan Zabeh ◽  
Martin J Gillies ◽  
...  

Neural oscillatory activities in basal ganglia have prominent roles in cognitive processes on local and global scales. However, the characteristics of high frequency oscillatory activities during cognitive tasks have not been extensively explored in human Globus Pallidus internus (GPi). This study aimed to investigate amplitude and interhemispheric coupling of bilateral GPi high gamma bursts in dystonia and Parkinson's Disease (PD) patients, in on and off medication states, after feedback during the Intra-Extra-Dimension shift (IED) task. Bilateral GPi Local Field Potentials (LFP) activity was recorded via externalized DBS electrodes during the IED task. Inter hemisphere phase synchrony was assessed using Inter-Site Phase Clustering (ISPC). Transient high gamma activity (~100-150Hz) was observed immediately after feedback in the dystonia patient. Moreover, these bursts were phase synchronous between left and right GPis with an antiphase clustering of phase differences. In contrast, no synchronous high gamma activity was detected in the PD patient with or without dopamine administration. The off-med PD patient displayed enhanced low frequency clusters ameliorated by medication in the on-med state. Furthermore, an increased low frequency activity was observed after feedback of incorrect trials in both disease states. The current study provides a rare report of antiphase homotopic synchrony in human GPi, potentially related to incorporating and processing feedback information. The absence of these activities in off and on-med PD indicates the potential presence of impaired medication independent circuits related to feedback processing. Together, these findings are helpful in pointing to the potential role of GPi's synchronized high frequency activity in cognitive tasks and feedback information processing.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Giulia Sprugnoli ◽  
Fanny Munsch ◽  
Davide Cappon ◽  
Rachel Paciorek ◽  
Joanna Macone ◽  
...  

Abstract Background Alzheimer’s disease (AD) is associated with alterations in cortical perfusion that correlate with cognitive impairment. Recently, neural activity in the gamma band has been identified as a driver of arteriolar vasomotion while, on the other hand, gamma activity induction on preclinical models of AD has been shown to promote protein clearance and cognitive protection. Methods In two open-label studies, we assessed the possibility to modulate cerebral perfusion in 15 mild to moderate AD participants via 40Hz (gamma) transcranial alternating current stimulation (tACS) administered 1 h daily for 2 or 4 weeks, primarily targeting the temporal lobe. Perfusion-sensitive MRI scans were acquired at baseline and right after the intervention, along with electrophysiological recording and cognitive assessments. Results No serious adverse effects were reported by any of the participants. Arterial spin labeling MRI revealed a significant increase in blood perfusion in the bilateral temporal lobes after the tACS treatment. Moreover, perfusion changes displayed a positive correlation with changes in episodic memory and spectral power changes in the gamma band. Conclusions Results suggest 40Hz tACS should be further investigated in larger placebo-controlled trials as a safe, non-invasive countermeasure to increase fast brain oscillatory activity and increase perfusion in critical brain areas in AD patients. Trial registration Studies were registered separately on ClinicalTrials.gov (NCT03290326, registered on September 21, 2017; NCT03412604, registered on January 26, 2018).


2021 ◽  
Author(s):  
Lea Himmer ◽  
Zoé Bürger ◽  
Leonie Fresz ◽  
Janina Maschke ◽  
Lore Wagner ◽  
...  

Reactivation of newly acquired memories during sleep across hippocampal and neocortical systems is proposed to underlie systems memory consolidation. Here, we investigate spontaneous memory reprocessing during sleep by applying machine learning to source space-transformed magnetoencephalographic data in a two-step exploratory and confirmatory study design. We decode memory-related activity from slow oscillations in hippocampus, frontal cortex and precuneus, indicating parallel memory processing during sleep. Moreover, we show complementary roles of hippocampus and neocortex: while gamma activity indicated memory reprocessing in hippocampus, delta and theta frequencies allowed decoding of memory in neocortex. Neocortex and hippocampus were linked through coherent activity and modulation of high-frequency gamma oscillations by theta, a dynamic similar to memory processing during wakefulness. Overall, we noninvasively demonstrate localized, coordinated memory reprocessing in human sleep.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Haya Akkad ◽  
Joshua Dupont-Hadwen ◽  
Edward Kane ◽  
Carys Evans ◽  
Liam Barrett ◽  
...  

Skill learning is a fundamental adaptive process, but the mechanisms remain poorly understood. Some learning paradigms, particularly in the memory domain, are closely associated with gamma activity that is amplitude-modulated by the phase of underlying theta activity, but whether such nested activity patterns also underpin skill learning is unknown. Here we addressed this question by using transcranial alternating current stimulation (tACS) over sensorimotor cortex to modulate theta-gamma activity during motor skill acquisition, as an exemplar of a non-hippocampal-dependent task. We demonstrated, and then replicated, a significant improvement in skill acquisition with theta-gamma tACS, which outlasted the stimulation by an hour. Our results suggest that theta-gamma activity may be a common mechanism for learning across the brain and provides a putative novel intervention for optimising functional improvements in response to training or therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. I. Dimitriadis ◽  
G. Perry ◽  
S. F. Foley ◽  
K. E. Tansey ◽  
D. K. Jones ◽  
...  

AbstractGamma oscillations (30–90 Hz) have been proposed as a signature of cortical visual information processing, particularly the balance between excitation and inhibition, and as a biomarker of neuropsychiatric diseases. Magnetoencephalography (MEG) provides highly reliable visual-induced gamma oscillation estimates, both at sensor and source level. Recent studies have reported a deficit of visual gamma activity in schizophrenia patients, in medication naive subjects, and high-risk clinical participants, but the genetic contribution to such a deficit has remained unresolved. Here, for the first time, we use a genetic risk score approach to assess the relationship between genetic risk for schizophrenia and visual gamma activity in a population-based sample drawn from a birth cohort. We compared visual gamma activity in a group (N = 104) with a high genetic risk profile score for schizophrenia (SCZ-PRS) to a group with low SCZ-PRS (N = 99). Source-reconstructed V1 activity was extracted using beamformer analysis applied to MEG recordings using individual MRI scans. No group differences were found in the induced gamma peak amplitude or peak frequency. However, a non-parametric statistical contrast of the response spectrum revealed more robust group differences in the amplitude of high-beta/gamma power across the frequency range, suggesting that overall spectral shape carries important biological information beyond the individual frequency peak. Our findings show that changes in gamma band activity correlate with liability to schizophrenia and suggest that the index changes to synaptic function and neuronal firing patterns that are of pathophysiological relevance rather than consequences of the disorder.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brandon J. Lew ◽  
Anabel Salimian ◽  
Tony W. Wilson

AbstractAlcohol and cannabis use disorder (AUD/CUD) are two of the most common addictive disorders. While studies are beginning to understand the neural changes related to acute and chronic use, few studies have examined the independent effects of AUD and CUD on neural oscillatory activity. We examined 45 adults who reported current use of both cannabis and alcohol. Participants underwent the SCID-V to determine whether they met criteria for AUD and/or CUD. Participants also completed a visual-spatial processing task while undergoing magnetoencephalography (MEG). ANCOVA with a 2 × 2 design was then used to identify the main effects of AUD and CUD on source-level oscillatory activity. Of the 45 adults, 17 met criteria for AUD, and 26 met criteria for CUD. All participants, including comparison groups, reported use of both cannabis and alcohol. Statistical analyses showed a main effect of AUD, such that participants with AUD displayed a blunted occipital alpha (8–16 Hz) response. Post-hoc testing showed this decreased alpha response was related to increased AUD symptoms, above and beyond amount of use. No effects of AUD or CUD were identified in visual theta or gamma activity. In conclusion, AUD was associated with reduced alpha responses and scaled with increasing severity, independent of CUD. These findings indicate that alpha oscillatory activity may play an integral part in networks affected by alcohol addiction.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0194-21.2021
Author(s):  
Abdulwahab Alasfour ◽  
Xi Jiang ◽  
Jorge Gonzalez-Martinez ◽  
Vikash Gilja ◽  
Eric Halgren

2021 ◽  
Author(s):  
Carrie R. Jonak ◽  
Ernest V. Pedapati ◽  
Lauren M. Schmitt ◽  
Samantha A. Assad ◽  
Manbir S. Sandhu ◽  
...  

Abstract Background: Fragile X Syndrome (FXS) is the most common inherited form of neurodevelopmental disability. It is often characterized, especially in males, by intellectual disability, anxiety, repetitive behavior, social communication deficits, delayed language development and abnormal sensory processing. Recently, we identified electroencephalographic (EEG) biomarkers that are conserved between the mouse model of FXS (Fmr1 KO mice) and humans with FXS. Methods: In this report, we evaluate small molecule target engagement utilizing multielectrode array electrophysiology in the Fmr1 KO mouse and in humans with FXS. Neurophysiologic target engagement was evaluated using single doses of the GABAB selective agonist racemic baclofen (RBAC). Results: In Fmr1 KO mice and in humans with FXS, baclofen use was synchronously associated with suppression of elevated gamma power and increase in theta power at rest. In the Frm1 KO mice, a baclofen-associated improvement in auditory chirp synchronization was also noted. Conclusions: Overall, we noted synchronized target engagement of RBAC on resting state electrophysiology, in particular the reduction of aberrant high frequency gamma activity, across species in FXS. This finding holds promise for translational medicine approaches to drug development for FXS, synchronizing treatment study across species using well-established EEG biological markers in this field. Trial Registration: The human experiments are registered under NCT02998151.


2021 ◽  
Author(s):  
Péter P. Ujma ◽  
Orsolya Szalárdy ◽  
Dániel Fabó ◽  
Loránd Erőss ◽  
Róbert Bódizs

AbstractSlow waves are major pacemakers of NREM sleep oscillations. While slow waves themselves are mainly generated by cortical neurons, it is not clear what role thalamic activity plays in the generation of some oscillations grouped by slow waves, and to what extent thalamic activity during slow waves is itself driven by corticothalamic inputs. To address this question, we simultaneously recorded both scalp EEG and local field potentials from six thalamic nuclei (bilateral anterior, mediodorsal and ventral anterior) in fifteen epileptic patients (age-range: 17-64 years, 7 females) undergoing Deep Brain Stimulation Protocol and assessed the temporal evolution of thalamic activity relative to scalp slow waves using time-frequency analysis. We found that thalamic activity in all six nuclei during scalp slow waves is highly similar to what is observed on the scalp itself. Slow wave downstates are characterized by delta, theta and alpha activity and followed by beta, high sigma and low sigma activity during subsequent upstates. Gamma activity in the thalamus is not significantly grouped by slow waves. Theta and alpha activity appeared first on the scalp, but sigma activity appeared first in the thalamus. These effects were largely independent from the scalp region in which SWs were detected and the precise identity of thalamic nuclei. Our results indicate that while small thalamocortical neuron assemblies may initiate cortical oscillations, especially in the sleep spindle range, the large-scale neuronal activity in the thalamus which is detected by field potentials is principally driven by global cortical activity, and thus it is highly similar to what is observed on the scalp.


Sign in / Sign up

Export Citation Format

Share Document