The Effect of Altered Habitat on Nitrogen Metabolism in Some Free-Living and Symbiotic Relationships Involving Nitrogen Fixing Organisms

1982 ◽  
Vol 1 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Isobel C. Gardner ◽  
A. Scott
2017 ◽  
Vol 195 ◽  
pp. 31-39 ◽  
Author(s):  
Bibha Dahal ◽  
Gitanjali NandaKafle ◽  
Lora Perkins ◽  
Volker S. Brözel

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e106714 ◽  
Author(s):  
Huhe ◽  
Shinchilelt Borjigin ◽  
Yunxiang Cheng ◽  
Nobukiko Nomura ◽  
Toshiaki Nakajima ◽  
...  

2005 ◽  
Vol 33 (1) ◽  
pp. 157-158 ◽  
Author(s):  
L.C. Crossman

Rhizobium spp. are found in soil. They are both free-living and found symbiotically associated with the nodules of leguminous plants. Traditionally, studies have focused on the association of these organisms with plants in nitrogen-fixing nodules, since this is regarded as the most important role of these bacteria in the environment. Rhizobium sp. are known to possess several replicons. Some, like the Rhizobium etli symbiotic plasmid p42d and the plasmid pNGR234b of Rhizobium NGR234, have been sequenced and characterized. The plasmids from these organisms are the focus of this short review.


Author(s):  
V.P. Soniya ◽  
P.S. Bhindhu

Background: Magnesium deficiency has become a major nutritional disorder in lateritic soils of Kerala. Appropriate magnesium fertilization is the best strategy to combat deficiency issues. Apart from correcting nutritional deficiency, magnesium fertilization has an influence on the growth of beneficial microbes such as nitrogen fixing bacterias and arbuscular mycorrhizal fungi. The experiment aimed to investigate the effect of magnesium fertilization on crop yield and population rhizosphere micoflora of cowpea in lateritic soils of Kerala.Methods: A pot culture experiment was conducted with a gradient of magnesium additions ranging from 5 mg kg-1 to 80 mg kg-1 of soil along with recommended dose of fertilizers. Population of rhizobium, free living nitrogen fixing bacteria, spore count of arbuscular mycorrhizal fungi and per cent root colonization of arbuscular mycorrhizal fungi were studied during flowering. The available magnesium and magnesium uptake were also worked out during harvest. Yield and yield contributing characteristics of cowpea were measured during harvest stage.Result: Magnesium addition produced significant variations in population of rhizobium and free- living nitrogen fixing bacteria whereas spore count of AMF and per cent root colonization of AMF did not vary according to the added doses of magnesium. A higher population of rhizobium, free living nitrogen fixers, root nodules, magnesium uptake, plant height and yield were obtained in the treatment where magnesium was applied @ 10 mg kg-1 soil.


Author(s):  
G. Mandimba ◽  
T. Heulin ◽  
R. Bally ◽  
A. Guckert ◽  
J. Balandreau

2020 ◽  
Vol 86 (15) ◽  
Author(s):  
Jinling Li ◽  
Ruwan Epa ◽  
Nichollas E. Scott ◽  
Dominik Skoneczny ◽  
Mahima Sharma ◽  
...  

ABSTRACT Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living Rhizobium leguminosarum SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil. IMPORTANCE Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, Rhizobium leguminosarum SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.


Rhizosphere ◽  
2020 ◽  
Vol 16 ◽  
pp. 100245
Author(s):  
Jésica Fernanda de Souza Gênero ◽  
Vinícius Rigueiro Messa ◽  
Meirieli Nunes Beladeli ◽  
Antônio Carlos Torres da Costa ◽  
José Barbosa Duarte Júnior

Sign in / Sign up

Export Citation Format

Share Document