The impact of a living learning community on first-year engineering students

2015 ◽  
Vol 41 (3) ◽  
pp. 331-341 ◽  
Author(s):  
Margaret A. Flynn ◽  
Jess W. Everett ◽  
Dex Whittinghill
2020 ◽  
Author(s):  
Jacqueline Hodge ◽  
Magdalini Lagoudas ◽  
Angie Harris ◽  
Jefferey Froyd ◽  
Margaret Hobson ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Pooya Taheri ◽  
Philip Robbins ◽  
Sirine Maalej

Langara College, as one of the leading undergraduate institutions in the province of British Columbia (BC), offers the “Applied Science for Engineering” two-year diploma program as well as the “Engineering Transfer” two-semester certificate program. Three project-based courses are offered as part of the two-year diploma program in Applied Science (APSC) and Computer Science (CPSC) departments: “APSC 1010—Engineering and Technology in Society”, “CPSC 1090—Engineering Graphics”, and “CPSC 1490—Applications of Microcontrollers”, with CPSC 1090 and CPSC 1490 also part of the Engineering Transfer curriculum. Although the goals, scopes, objectives, and evaluation criteria of these courses are different, the main component of all three courses is a group-based technical project. Engineering students have access to Langara College’s Makerspace for the hands-on component of their project. Makerspaces expand experiential learning opportunities and allows students to gain a skillset outside the traditional classroom. This paper begins with a detailed review of the maker movement and the impact of makerspace in higher education. Different forms of makerspace and the benefits of incorporating them on first-year students’ creativity, sense of community, self-confidence, and entrepreneurial skills are discussed. This paper introduces Langara’s engineering program and its project-based design courses. Langara’s interdisciplinary makerspace, its goals and objectives, equipment, and some sample projects are introduced in this paper in detail. We then explain how the group-project component of APSC 1010, CPSC 1090, and CPSC 1490 are managed and how using makerspace improves students’ performance in such projects. In conclusion, the paper describes the evaluation of learning outcomes via an anonymous student survey.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Somaiah Thimmaiah ◽  
Keith Phelan ◽  
Joshua D. Summers

Design reviews are typically used for three types of design activities: (1) identifying errors, (2) assessing the impact of the errors, and (3) suggesting solutions for the errors. This experimental study focuses on understanding the second issue as it relates to the number of errors considered, the existence of controls, and the level of domain familiarity of the assessor. A set of design failures and associated controls developed for a completed industry sponsored project is used as the experimental design problem. Nondomain generalists (students from an undergraduate psychology class), domain generalists (first year engineering students), and domain specialists (graduate mechanical engineering students) are provided a set of failure modes and asked to provide their own opinion or confidence on whether the system would still successfully achieve the stated objectives. The confidence level for all domain populations decreased significantly as the number of design errors increased (largest p-value = 0.0793), and this decrease in confidence is more significant as the number of design errors increases. The impact on confidence is lower when solutions (controls) are provided to prevent the errors (largest p-value = 0.0334) as the confidence decreased faster for domain general engineers as compared to domain specialists (p = < 0.0001). The domain specialists showed higher confidence in making decisions than domain generalists and nondomain generalists as the design errors increase.


Sign in / Sign up

Export Citation Format

Share Document