Multi-material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm

2018 ◽  
Vol 50 (12) ◽  
pp. 2091-2107 ◽  
Author(s):  
Kai Long ◽  
Xuan Wang ◽  
Xianguang Gu
2019 ◽  
Vol 30 (5) ◽  
pp. 2655-2668 ◽  
Author(s):  
Wojciech Piotr Adamczyk ◽  
Marcin Gorski ◽  
Ziemowit Ostrowski ◽  
Ryszard Bialecki ◽  
Grzegorz Kruczek ◽  
...  

Purpose Large structural objects, primarily concrete bridges, can be reinforced by gluing to their stretched surface tapes of fiber-reinforced polymer (FRP). The condition for this technology to work requires the quality of the bonding of FRP and the concrete to be perfect. Possible defects may arise in the phase of construction but also as a result of long-term fatigue loads. These defects having different forms of voids and discontinuities in the bonding layer are difficult to detect by optical inspection. This paper aims to describe the development of a rapid and nondestructive method for quantitative assessment of the debonding between materials. Design/methodology/approach The applied technique belongs to the wide class of active infrared (IR) thermography, the principle of which is to heat (or cool) the investigated object, and determine the properties of interest from the recorded, by an IR camera, temperature field. The methodology implemented in this work is to uniformly heat for a few seconds, using a set of halogen lamps, the FRP surface attached to the concrete. The parameter of interest is the thermal resistance of the layer separating the polymer tape and the concrete. The presence of voids and debonding will result in large values of this resistance. Its value is retrieved by solving an inverse transient heat conduction problem. This is accomplished by minimizing, in the sense of least squares, the difference between the recorded and simulated temperatures. The latter is defined as a solution of a 1D transient heat conduction problem with the already mentioned thermal resistance treated as the only decision variable. Findings A general method has been developed, which detects debonding of the FRP tapes from the concrete. The method is rapid and nondestructive. Owing to a special selection of the compared dimensionless measured and simulated temperatures, the method is not sensitive to the surface quality (roughness and emissivity). Measurements and calculation may be executed within seconds. The efficiency of the technique has been shown at a sample, where the defects have been artificially introduced in a controlled manner. Originality/value A quantitative assessment procedure which can be used to determine the extent of the debonding has been developed. The procedure uses inverse technique whose result is the unknown thermal resistance between the member and the FRP strip.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142093057
Author(s):  
Ren-Fang Zhou ◽  
Xiao-Feng Liu ◽  
Guo-Ping Cai

In auto-parking systems, a certain degree of error in the path tracking algorithm is inevitable. This is caused by actuator error, tire slipping, or other factors relevant to and included in the parking process. In such situations, the parking path needs to be updated to finish parking successfully which is referred to as secondary path planning. Herein, a new geometry-based method is proposed to deal with this issue, which can be called the pattern-based method. In this method, a predefined path pattern set consisting of 24 multi-segment patterns is developed first. These patterns are composed of straight lines and arcs and account for constraints due to motion and the immediate environment. Then, a traversal policy is adopted to select the path pattern from the set, and the sequential quadratic programming algorithm is used to determine the optimal parameters that fine-tune the pattern to meet the current constraints. In the simulation section, the effectiveness of the proposed method is demonstrated. Moreover, compared to the search-based method represented by a variation of rapidly exploring random tree*, the proposed method has a higher planning performance.


Open Physics ◽  
2013 ◽  
Vol 11 (8) ◽  
Author(s):  
Partner Ndlovu ◽  
Rasselo Moitsheki

AbstractSome new conservation laws for the transient heat conduction problem for heat transfer in a straight fin are constructed. The thermal conductivity is given by a power law in one case and by a linear function of temperature in the other. Conservation laws are derived using the direct method when thermal conductivity is given by the power law and the multiplier method when thermal conductivity is given as a linear function of temperature. The heat transfer coefficient is assumed to be given by the power law function of temperature. Furthermore, we determine the Lie point symmetries associated with the conserved vectors for the model with power law thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document