Bezout equations over bivariate polynomial matrices related by an entire function

2014 ◽  
Vol 63 (6) ◽  
pp. 1138-1153 ◽  
Author(s):  
Koichi Suyama ◽  
Nobuko Kosugi
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongmei Li ◽  
Yingying Gui ◽  
Jinwang Liu ◽  
Man Wu

The reduction of two-dimensional systems plays an important role in the theory of systems, which is closely associated with the equivalence of the bivariate polynomial matrices. In this paper, the equivalence problems on several classes of bivariate polynomial matrices are investigated. Some new results on the equivalence of these matrices are obtained. These results are useful for reducing two-dimensional systems.


2019 ◽  
Vol 484 (1) ◽  
pp. 7-11
Author(s):  
N. F. Abuzyarova

We consider the problem of obtaining the restrictions on the zero set of an entire function of exponential type under which this function belongs to the Schwartz algebra and invertible in the sense of Ehrenpreis.


2020 ◽  
Vol 18 (1) ◽  
pp. 211-215
Author(s):  
Shengjiang Chen ◽  
Aizhu Xu

Abstract Let f(z) be an entire function of hyper order strictly less than 1. We prove that if f(z) and its nth exact difference {\Delta }_{c}^{n}f(z) share 0 CM and 1 IM, then {\Delta }_{c}^{n}f(z)\equiv f(z) . Our result improves the related results of Zhang and Liao [Sci. China A, 2014] and Gao et al. [Anal. Math., 2019] by using a simple method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lung-Hui Chen

Abstract In this paper, we discuss how to partially determine the Fourier transform F ⁢ ( z ) = ∫ - 1 1 f ⁢ ( t ) ⁢ e i ⁢ z ⁢ t ⁢ 𝑑 t , z ∈ ℂ , F(z)=\int_{-1}^{1}f(t)e^{izt}\,dt,\quad z\in\mathbb{C}, given the data | F ⁢ ( z ) | {\lvert F(z)\rvert} or arg ⁡ F ⁢ ( z ) {\arg F(z)} for z ∈ ℝ {z\in\mathbb{R}} . Initially, we assume [ - 1 , 1 ] {[-1,1]} to be the convex hull of the support of the signal f. We start with reviewing the computation of the indicator function and indicator diagram of a finite-typed complex-valued entire function, and then connect to the spectral invariant of F ⁢ ( z ) {F(z)} . Then we focus to derive the unimodular part of the entire function up to certain non-uniqueness. We elaborate on the translation of the signal including the non-uniqueness associates of the Fourier transform. We show that the phase retrieval and magnitude retrieval are conjugate problems in the scattering theory of waves.


2006 ◽  
Vol 42 (3-4) ◽  
pp. 345-361 ◽  
Author(s):  
Marko D. Petković ◽  
Predrag S. Stanimirović

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Georgios Korpas ◽  
Jan Manschot ◽  
Gregory W. Moore ◽  
Iurii Nidaiev

AbstractThe u-plane integral is the contribution of the Coulomb branch to correlation functions of $${\mathcal {N}}=2$$ N = 2 gauge theory on a compact four-manifold. We consider the u-plane integral for correlators of point and surface observables of topologically twisted theories with gauge group $$\mathrm{SU}(2)$$ SU ( 2 ) , for an arbitrary four-manifold with $$(b_1,b_2^+)=(0,1)$$ ( b 1 , b 2 + ) = ( 0 , 1 ) . The u-plane contribution equals the full correlator in the absence of Seiberg–Witten contributions at strong coupling, and coincides with the mathematically defined Donaldson invariants in such cases. We demonstrate that the u-plane correlators are efficiently determined using mock modular forms for point observables, and Appell–Lerch sums for surface observables. We use these results to discuss the asymptotic behavior of correlators as function of the number of observables. Our findings suggest that the vev of exponentiated point and surface observables is an entire function of the fugacities.


Sign in / Sign up

Export Citation Format

Share Document