scholarly journals Equiangular frames and generalizations of the Welch bound to dual pairs of frames

2019 ◽  
Vol 68 (12) ◽  
pp. 2495-2505
Author(s):  
Ole Christensen ◽  
Somantika Datta ◽  
Rae Young Kim
OPSEARCH ◽  
2005 ◽  
Vol 42 (3) ◽  
pp. 288-296
Author(s):  
K. C. Sivakumar ◽  
J. Mercy Swarna

IEEE Access ◽  
2020 ◽  
pp. 1-1
Author(s):  
Shimin Sun ◽  
Li Han ◽  
Yang Yan ◽  
Yao Yao
Keyword(s):  

Author(s):  
Johann Boos ◽  
Toivo Leiger

The paper aims to develop for sequence spacesEa general concept for reconciling certain results, for example inclusion theorems, concerning generalizations of the Köthe-Toeplitz dualsE×(×∈{α,β})combined with dualities(E,G),G⊂E×, and theSAK-property (weak sectional convergence). TakingEβ:={(yk)∈ω:=𝕜ℕ|(ykxk)∈cs}=:Ecs, wherecsdenotes the set of all summable sequences, as a starting point, then we get a general substitute ofEcsby replacingcsby any locally convex sequence spaceSwith sums∈S′(in particular, a sum space) as defined by Ruckle (1970). This idea provides a dual pair(E,ES)of sequence spaces and gives rise for a generalization of the solid topology and for the investigation of the continuity of quasi-matrix maps relative to topologies of the duality(E,Eβ). That research is the basis for general versions of three types of inclusion theorems: two of them are originally due to Bennett and Kalton (1973) and generalized by the authors (see Boos and Leiger (1993 and 1997)), and the third was done by Große-Erdmann (1992). Finally, the generalizations, carried out in this paper, are justified by four applications with results around different kinds of Köthe-Toeplitz duals and related section properties.


2000 ◽  
Vol 75 (4) ◽  
pp. 256-263 ◽  
Author(s):  
�. del R�o ◽  
J. J. Simo?
Keyword(s):  

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Yoan Gautier ◽  
Dan Israël

Abstract We study the moduli spaces of heterotic/type II dual pairs in four dimensions with $$ \mathcal{N} $$ N = 2 supersymmetry corresponding to non-geometric Calabi-Yau backgrounds on the type II side and to T-fold compactifications on the heterotic side. The vector multiplets moduli space receives perturbative corrections in the heterotic description only, and non- perturbative correction in both descriptions. We derive explicitely the perturbative corrections to the heterotic four-dimensional prepotential, using the knowledge of its singularity structure and of the heterotic perturbative duality group. We also derive the exact hypermultiplets moduli space, that receives corrections neither in the string coupling nor in α′.


2021 ◽  
Author(s):  
◽  
Muhammad Rashed

<p>The ocean is a temporally and spatially varying environment, the characteristics of which pose significant challenges to the development of effective underwater wireless communications and sensing systems.  An underwater sensing system such as a sonar detects the presence of a known signal through correlation. It is advantageous to use multiple transducers to increase surveying area with reduced surveying costs and time. Each transducers is assigned a dedicated code. When using multiple codes, the sidelobes of auto- and crosscorrelations are restricted to theoretical limits known as bounds. Sets of codes must be optimised in order to achieve optimal correlation properties, and, achieve Sidelobe Level (SLL)s as low as possible.  In this thesis, we present a novel code-optimisation method to optimise code-sets with any number of codes and up to any length of each code. We optimise code-sets for a matched filter for application in a multi-code sonar system. We first present our gradient-descent based algorithm to optimise sets of codes for flat and low crosscorrelations and autocorrelation sidelobes, including conformance of the magnitude of the samples of the codes to a target power profile. We incorporate the transducer frequency response and the channel effects into the optimisation algorithm. We compare the correlations of our optimised codes with the well-known Welch bound. We then present a method to widen the autocorrelation mainlobe and impose monotonicity. In many cases, we are able to achieve SLLs beyond the Welch bound.  We study the Signal to Noise Ratio (SNR) improvement of the optimised codes for an Underwater Acoustic (UWA) channel. During its propagation, the acoustic wave suffers non-constant transmission loss which is compensated by the application of an appropriate Time Variable Gain (TVG). The effect of the TVG modifies the noise received with the signal. We show that in most cases, the matched filter is still the optimum filter. We also show that the accuracy in timing is very important in the application of the TVG to the received signal.  We then incorporate Doppler tolerance into the existing optimisation algorithm. Our proposed method is able to optimise sets of codes for multiple Doppler scaling factors and non-integer delays in the arrival of the reflection, while still conforming to other constraints.  We suggest designing mismatched filters to further reduce the SLLs, firstly using an existing Quadratically Constrained Qaudratic Program (QCQP) formulation and secondly, as a local optimisation problem, modifying our basic optimisation algorithm.</p>


Sign in / Sign up

Export Citation Format

Share Document