scholarly journals Moduli spaces of non-geometric type II/heterotic dual pairs

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Yoan Gautier ◽  
Dan Israël

Abstract We study the moduli spaces of heterotic/type II dual pairs in four dimensions with $$ \mathcal{N} $$ N = 2 supersymmetry corresponding to non-geometric Calabi-Yau backgrounds on the type II side and to T-fold compactifications on the heterotic side. The vector multiplets moduli space receives perturbative corrections in the heterotic description only, and non- perturbative correction in both descriptions. We derive explicitely the perturbative corrections to the heterotic four-dimensional prepotential, using the knowledge of its singularity structure and of the heterotic perturbative duality group. We also derive the exact hypermultiplets moduli space, that receives corrections neither in the string coupling nor in α′.

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


Author(s):  
Ulrich Görtz ◽  
Xuhua He ◽  
Michael Rapoport

Abstract We investigate qualitative properties of the underlying scheme of Rapoport–Zink formal moduli spaces of p-divisible groups (resp., shtukas). We single out those cases where the dimension of this underlying scheme is zero (resp., those where the dimension is the maximal possible). The model case for the first alternative is the Lubin–Tate moduli space, and the model case for the second alternative is the Drinfeld moduli space. We exhibit a complete list in both cases.


2020 ◽  
pp. 1-23
Author(s):  
MICHELE BOLOGNESI ◽  
NÉSTOR FERNÁNDEZ VARGAS

Abstract Let C be a hyperelliptic curve of genus $g \geq 3$ . In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients $(\mathbb {P}^1)^{2g}//\text {PGL(2)}$ . Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer $(g-1)$ -varieties over $\mathbb {P}^g$ inside the ramification locus of the theta map.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Eric D’Hoker ◽  
Carlos R. Mafra ◽  
Boris Pioline ◽  
Oliver Schlotterer

Abstract In an earlier paper, we constructed the genus-two amplitudes for five external massless states in Type II and Heterotic string theory, and showed that the α′ expansion of the Type II amplitude reproduces the corresponding supergravity amplitude to leading order. In this paper, we analyze the effective interactions induced by Type IIB superstrings beyond supergravity, both for U(1)R-preserving amplitudes such as for five gravitons, and for U(1)R-violating amplitudes such as for one dilaton and four gravitons. At each order in α′, the coefficients of the effective interactions are given by integrals over moduli space of genus-two modular graph functions, generalizing those already encountered for four external massless states. To leading and sub-leading orders, the coefficients of the effective interactions D2ℛ5 and D4ℛ5 are found to match those of D4ℛ4 and D6ℛ4, respectively, as required by non-linear supersymmetry. To the next order, a D6ℛ5 effective interaction arises, which is independent of the supersymmetric completion of D8ℛ4, and already arose at genus one. A novel identity on genus-two modular graph functions, which we prove, ensures that up to order D6ℛ5, the five-point amplitudes require only a single new modular graph function in addition to those needed for the four-point amplitude. We check that the supergravity limit of U(1)R-violating amplitudes is free of UV divergences to this order, consistently with the known structure of divergences in Type IIB supergravity. Our results give strong consistency tests on the full five-point amplitude, and pave the way for understanding S-duality beyond the BPS-protected sector.


Author(s):  
Anna Gori ◽  
Alberto Verjovsky ◽  
Fabio Vlacci

AbstractMotivated by the theory of complex multiplication of abelian varieties, in this paper we study the conformality classes of flat tori in $${\mathbb {R}}^{n}$$ R n and investigate criteria to determine whether a n-dimensional flat torus has non trivial (i.e. bigger than $${\mathbb {Z}}^{*}={\mathbb {Z}}{\setminus }\{0\}$$ Z ∗ = Z \ { 0 } ) semigroup of conformal endomorphisms (the analogs of isogenies for abelian varieties). We then exhibit several geometric constructions of tori with this property and study the class of conformally equivalent lattices in order to describe the moduli space of the corresponding tori.


2002 ◽  
Vol 2002 (04) ◽  
pp. 003-003 ◽  
Author(s):  
Alexander Maloney ◽  
Marcus Spradlin ◽  
Andrew Strominger

2010 ◽  
Vol 198 ◽  
pp. 173-190 ◽  
Author(s):  
Tatsuki Hayama

AbstractThis paper examines the moduli spaces of log Hodge structures introduced by Kato and Usui. This moduli space is a partial compactification of a discrete quotient of a period domain. This paper treats the following two cases: (A) where the period domain is Hermitian symmetric, and (B) where the Hodge structures are of the mirror quintic type. Especially it addresses a property of the torsor.


1998 ◽  
Vol 09 (01) ◽  
pp. 1-45 ◽  
Author(s):  
JØRGEN ELLEGAARD ANDERSEN

Given a foliation F with closed leaves and with certain kinds of singularities on an oriented closed surface Σ, we construct in this paper an isotropic foliation on ℳ(Σ), the moduli space of flat G-connections, for G any compact simple simply connected Lie-group. We describe the infinitesimal structure of this isotropic foliation in terms of the basic cohomology with twisted coefficients of F. For any pair (F, g), where g is a singular metric on Σ compatible with F, we construct a new polarization on the symplectic manifold ℳ′(Σ), the open dense subset of smooth points of ℳ(Σ). We construct a sequence of complex structures on Σ, such that the corresponding complex structures on ℳ′(Σ) converges to the polarization associated to (F, g). In particular we see that the Jeffrey–Weitzman polarization on the SU(2)-moduli space is the limit of a sequence of complex structures induced from a degenerating family of complex structures on Σ, which converges to a point in the Thurston boundary of Teichmüller space of Σ. As a corollary of the above constructions, we establish a certain discontinuiuty at the Thurston boundary of Teichmüller space for the map from Teichmüller space to the space of polarizations on ℳ′(Σ). For any reducible finite order diffeomorphism of the surface, our constuction produces an invariant polarization on the moduli space.


2017 ◽  
Vol 60 (3) ◽  
pp. 522-535 ◽  
Author(s):  
Oleksandr Iena ◽  
Alain Leytem

AbstractIn the Simpson moduli space M of semi-stable sheaves with Hilbert polynomial dm − 1 on a projective plane we study the closed subvariety M' of sheaves that are not locally free on their support. We show that for d ≥4 , it is a singular subvariety of codimension 2 in M. The blow up of M along M' is interpreted as a (partial) modification of M \ M' by line bundles (on support).


2019 ◽  
Vol 2019 (749) ◽  
pp. 87-132
Author(s):  
Laurent Meersseman

Abstract Kuranishi’s fundamental result (1962) associates to any compact complex manifold {X_{0}} a finite-dimensional analytic space which has to be thought of as a local moduli space of complex structures close to {X_{0}} . In this paper, we give an analogous statement for Levi-flat CR-manifolds fibering properly over the circle by associating to any such {\mathcal{X}_{0}} the loop space of a finite-dimensional analytic space which serves as a local moduli space of CR-structures close to {\mathcal{X}_{0}} . We then develop in this context a Kodaira–Spencer deformation theory making clear the likenesses as well as the differences with the classical case. The article ends with applications and examples.


Sign in / Sign up

Export Citation Format

Share Document