Direct numerical simulations of turbulent convection: I. Variable gravity and uniform rotation

1990 ◽  
Vol 53 (1-2) ◽  
pp. 1-42 ◽  
Author(s):  
W. Cabot ◽  
O. Hubickyj ◽  
J. B. Pollack ◽  
P. Cassen ◽  
V. M. Canuto
2016 ◽  
Vol 94 (11) ◽  
pp. 1200-1204 ◽  
Author(s):  
Hamed Marzougui

In the present work, we propose a modification to the standard K–ϵ model for simulating homogeneous decaying turbulence subjected to uniform rotation. In this modification, the dissipation rate equation is formulated in terms of the rotation rate Ω, the integral length scales along the axis of rotation [Formula: see text], and its isotropic value [Formula: see text]. The comparison of our results with the corresponding direct numerical simulations proves that the new model reproduces in an excellent way the decay rate of the turbulent kinetic energy.


2018 ◽  
Vol 848 ◽  
pp. 648-659 ◽  
Author(s):  
Yantao Yang ◽  
Roberto Verzicco ◽  
Detlef Lohse

We conduct direct numerical simulations for turbulent Rayleigh–Bénard (RB) convection, driven simultaneously by two scalar components (say, temperature and concentration) with different molecular diffusivities, and measure the respective fluxes and the Reynolds number. To account for the results, we generalize the Grossmann–Lohse theory for traditional RB convection (Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56; Phys. Rev. Lett., vol. 86 (15), 2001, pp. 3316–3319; Stevens et al., J. Fluid Mech., vol. 730, 2013, pp. 295–308) to this two-scalar turbulent convection. Our numerical results suggest that the generalized theory can successfully capture the overall trends for the fluxes of two scalars and the Reynolds number without introducing any new free parameters. In fact, for most of the parameter space explored here, the theory can even predict the absolute values of the fluxes and the Reynolds number with good accuracy. The current study extends the generality of the Grossmann–Lohse theory in the area of buoyancy-driven convection flows.


Sign in / Sign up

Export Citation Format

Share Document