Determination of quinclorac by adsorptive stripping voltammetry in rice samples without sample pretreatment

2021 ◽  
Vol 56 (9) ◽  
pp. 828-837
Author(s):  
Priscila A. Liberato ◽  
Leonardo L. Okumura ◽  
Astréa F. S. Silva ◽  
Alexandre Gurgel ◽  
Herbert Aleixo ◽  
...  
2015 ◽  
Vol 49 (9) ◽  
pp. 1436-1451 ◽  
Author(s):  
Dan Zhu ◽  
Qiangqiang Li ◽  
Kevin C. Honeychurch ◽  
Martina Piano ◽  
Gang Chen

1996 ◽  
Vol 8 (7) ◽  
pp. 639-642 ◽  
Author(s):  
Christopher M. A. Brett ◽  
Ana Maria Oliveira Brett ◽  
Laura Tugulea

2013 ◽  
Vol 11 (5) ◽  
pp. 736-741 ◽  
Author(s):  
Robert Piech ◽  
Beata Paczosa-Bator

AbstractThe renewable mercury film electrode, applied for the determination of papaverine traces using differential pulse adsorptive stripping voltammetry (DP AdSV) is presented. The calibration graph obtained for papaverine is linear from 1.25 nM (0.42 µg L−1) to 95 nM (32.2 µg L−1) for a preconcentration time of 60 s, with correlation coefficient of 0.998. For the renewable mercury electrode (Hg(Ag)FE) with a surface area of 9.1 mm2 the detection limit for a preconcentration time of 60 s is 0.7 nM (0.24 µg L−1). The repeatability of the method at a concentration level of the analyte as low as 17 µg L−1, expressed as RSD is 3.3% (n=5). The proposed method was successfully applied and validated by studying the recovery of papaverine from drugs, urine and synthetic solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Dariusz Guziejewski ◽  
Agnieszka Nosal-Wiercińska ◽  
Sławomira Skrzypek ◽  
Witold Ciesielski ◽  
Sylwia Smarzewska

The aim of the research was the use of square wave adsorptive stripping voltammetry (SWAdSV) in conjunction with a hanging mercury drop electrode (HMDE) for the determination of nitrothal-isopropyl. It was found that optimal SW technique parameters were frequency, 200 Hz; amplitude, 50 mV; and step potential, 5 mV. Accumulation time and potential were studied to select the optimal conditions in adsorptive stripping voltammetry: 45 s at 0.0 V, respectively. The calibration curve (SWSV) was linear in the nitrothal-isopropyl concentration range from 2.0 × 10−7 to 2.0 × 10−6 mol L−1 with detection limit of 3.46 × 10−8 mol L−1. The repeatability of the method was determined at a nitrothal-isopropyl concentration level equal to 6.0 × 10−7 mol L−1 and expressed as RSD = 5.5% (n=6). The proposed method was successfully validated by studying the recovery of nitrothal-isopropyl in spiked environmental samples.


Sign in / Sign up

Export Citation Format

Share Document