Generalized variational solutions of the cauchy problem for hamilton — jacobi equations

1981 ◽  
Vol 6 (3) ◽  
pp. 289-304
Author(s):  
Antonio Leaci ◽  
Giorgio Vergara Caffarelli
2007 ◽  
Vol 04 (04) ◽  
pp. 771-795 ◽  
Author(s):  
GIUSEPPE MARIA COCLITE ◽  
NILS HENRIK RISEBRO

We consider Hamilton–Jacobi equations, where the Hamiltonian depends discontinuously on both the spatial and temporal location. Our main result is the existence of viscosity solution to the Cauchy problem, and that the front tracking algorithm yields an L∞ contractive semigroup. We define a viscosity solution by treating the discontinuities in the coefficients analogously to "internal boundaries". The existence of viscosity solutions is established constructively via a front tracking approximation, whose limits are viscosity solutions, where by "viscosity solution" we mean a viscosity solution that posses some additional regularity at the discontinuities in the coefficients. We then show a comparison result that is valid for these viscosity solutions.


2019 ◽  
Vol 150 (6) ◽  
pp. 3028-3059
Author(s):  
Martino Bardi ◽  
Annalisa Cesaroni ◽  
Erwin Topp

AbstractThis paper deals with the periodic homogenization of nonlocal parabolic Hamilton–Jacobi equations with superlinear growth in the gradient terms. We show that the problem presents different features depending on the order of the nonlocal operator, giving rise to three different cell problems and effective operators. To prove the locally uniform convergence to the unique solution of the Cauchy problem for the effective equation we need a new comparison principle among viscosity semi-solutions of integrodifferential equations that can be of independent interest.


1997 ◽  
Vol 29 (10) ◽  
pp. 1145-1159 ◽  
Author(s):  
Tran Duc Van ◽  
Nguyen Hoang ◽  
Mikio Tsuji

2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1287-1293 ◽  
Author(s):  
Zujin Zhang ◽  
Dingxing Zhong ◽  
Shujing Gao ◽  
Shulin Qiu

In this paper, we consider the Cauchy problem for the 3D MHD fluid passing through the porous medium, and provide some fundamental Serrin type regularity criteria involving the velocity or its gradient, the pressure or its gradient. This extends and improves [S. Rahman, Regularity criterion for 3D MHD fluid passing through the porous medium in terms of gradient pressure, J. Comput. Appl. Math., 270 (2014), 88-99].


Sign in / Sign up

Export Citation Format

Share Document