additional regularity
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 56 (2) ◽  
pp. 407-440
Author(s):  
Marija Galić ◽  

In this manuscript, we deal with the regularity of a weak solution to the fluid-composite structure interaction problem introduced in [12]. The problem describes a linear fluid-structure interaction between an incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh-like elastic structure. The fluid and the mesh-supported structure are coupled via the kinematic and dynamic boundary coupling conditions describing continuity of velocity and balance of contact forces at the fluid-structure interface. In [12], it is shown that there exists a weak solution to the described problem. By using the standard techniques from the analysis of partial differential equations we prove that such a weak solution possesses an additional regularity in both time and space variables for initial and boundary data satisfying the appropriate regularity and compatibility conditions imposed on the interface.


2021 ◽  
Vol 53 (4) ◽  
pp. 981-1022
Author(s):  
Jeffrey Negrea ◽  
Jeffrey S. Rosenthal

AbstractA common tool in the practice of Markov chain Monte Carlo (MCMC) is to use approximating transition kernels to speed up computation when the desired kernel is slow to evaluate or is intractable. A limited set of quantitative tools exists to assess the relative accuracy and efficiency of such approximations. We derive a set of tools for such analysis based on the Hilbert space generated by the stationary distribution we intend to sample, $L_2(\pi)$. Our results apply to approximations of reversible chains which are geometrically ergodic, as is typically the case for applications to MCMC. The focus of our work is on determining whether the approximating kernel will preserve the geometric ergodicity of the exact chain, and whether the approximating stationary distribution will be close to the original stationary distribution. For reversible chains, our results extend the results of Johndrow et al. (2015) from the uniformly ergodic case to the geometrically ergodic case, under some additional regularity conditions. We then apply our results to a number of approximate MCMC algorithms.


Meccanica ◽  
2021 ◽  
Author(s):  
Noelia Bazarra ◽  
Alberto Castejón ◽  
José R. Fernández ◽  
Ramón Quintanilla

AbstractIn this work we study, from the numerical point of view, a one-dimensional thermoelastic problem where the thermal law is of type III. Quasi-static microvoids are also assumed within the model. The variational formulation leads to a coupled linear system made of variational equations and it is written in terms of the velocity, the volume fraction and the temperature. Fully discrete approximations are introduced by using the finite element method and the backward Euler method. A discrete stability property and a priori error estimates are proved, deriving the linear convergence under adequate additional regularity. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution.


Author(s):  
Curtis Porter ◽  
Igor Zelenko

Abstract This article is devoted to the local geometry of everywhere 2-nondegenerate CR manifolds M of hypersurface type. An absolute parallelism for such structures was recently constructed independently by Isaev and Zaitsev, Medori and Spiro, and Pocchiola in the minimal possible dimension ( dim ⁡ M = 5 {\dim M=5} ), and for dim ⁡ M = 7 {\dim M=7} in certain cases by the first author. In the present paper, we develop a bigraded (i.e., ℤ × ℤ {\mathbb{Z}\times\mathbb{Z}} -graded) analog of Tanaka’s prolongation procedure to construct an absolute parallelism for these CR structures in arbitrary (odd) dimension with Levi kernel of arbitrary admissible dimension. We introduce the notion of a bigraded Tanaka symbol – a complex bigraded vector space – containing all essential information about the CR structure. Under the additional regularity assumption that the symbol is a Lie algebra, we define a bigraded analog of the Tanaka universal algebraic prolongation, endowed with an anti-linear involution, and prove that for any CR structure with a given regular symbol there exists a canonical absolute parallelism on a bundle whose dimension is that of the bigraded universal algebraic prolongation. Moreover, we show that for each regular symbol there is a unique (up to local equivalence) such CR structure whose algebra of infinitesimal symmetries has maximal possible dimension, and the latter algebra is isomorphic to the real part of the bigraded universal algebraic prolongation of the symbol. In the case of 1-dimensional Levi kernel we classify all regular symbols and calculate their bigraded universal algebraic prolongations. In this case, the regular symbols can be subdivided into nilpotent, strongly non-nilpotent, and weakly non-nilpotent. The bigraded universal algebraic prolongation of strongly non-nilpotent regular symbols is isomorphic to the complex orthogonal algebra 𝔰 ⁢ 𝔬 ⁢ ( m , ℂ ) {\mathfrak{so}(m,\mathbb{C})} , where m = 1 2 ⁢ ( dim ⁡ M + 5 ) {m=\tfrac{1}{2}(\dim M+5)} . Any real form of this algebra – except 𝔰 ⁢ 𝔬 ⁢ ( m ) {\mathfrak{so}(m)} and 𝔰 ⁢ 𝔬 ⁢ ( m - 1 , 1 ) {\mathfrak{so}(m-1,1)} – corresponds to the real part of the bigraded universal algebraic prolongation of exactly one strongly non-nilpotent regular CR symbol. However, for a fixed dim ⁡ M ≥ 7 {\dim M\geq 7} the dimension of the bigraded universal algebraic prolongations of all possible regular CR symbols achieves its maximum on one of the nilpotent regular symbols, and this maximal dimension is 1 4 ⁢ ( dim ⁡ M - 1 ) 2 + 7 {\frac{1}{4}(\dim M-1)^{2}+7} .


2021 ◽  
Vol 43 ◽  
pp. e14
Author(s):  
Cleverson Roberto da Luz ◽  
Maíra Fernandes Gauer Palma

In this work we study the asymptotic behavior of solutions for a general linear second-order evolution differential equation in time with fractional Laplace operators in $\mathbb{R}^n$. We obtain improved decay estimates with less demand on the initial data when compared to previous results in the literature. In certain cases, we observe that the dissipative structure of the equation is of regularity-loss type. Due to that special structure, to get decay estimates in high frequency region in the Fourier space it is necessary to impose additional regularity on the initial data to obtain the same decay estimates as in low frequency region. The results obtained in this work can be applied to several initial value problems associated to second-order equations, as for example, wave equation, plate equation, IBq, among others. 


2020 ◽  
Vol 120 (1-2) ◽  
pp. 123-149
Author(s):  
Mogtaba Mohammed ◽  
Noor Ahmed

In this paper, we present homogenization and corrector results for stochastic linear parabolic equations in periodically perforated domains with non-homogeneous Robin conditions on the holes. We use the periodic unfolding method and probabilistic compactness results. Homogenization results presented in this paper are stochastic counterparts of some fundamental work given in [Cioranescu, Donato and Zaki in Port. Math. (N.S.) 63 (2006), 467–496]. We show that the sequence of solutions of the original problem converges in suitable topologies to the solution of a homogenized problem, which is a parabolic stochastic equation in fixed domain with Dirichlet condition on the boundary. In contrast to the two scale convergence method, the corrector results obtained in this paper are without any additional regularity assumptions on the solutions of the original problems.


2019 ◽  
Vol 56 (4) ◽  
pp. 1086-1105
Author(s):  
Ekaterina T. Kolkovska ◽  
Ehyter M. Martín-González

AbstractWe study the distribution of the negative Wiener–Hopf factor for a class of two-sided jump Lévy processes whose positive jumps have a rational Laplace transform. The positive Wiener–Hopf factor for this class of processes was studied by Lewis and Mordecki (2008). Here we obtain a formula for the Laplace transform of the negative Wiener–Hopf factor, as well as an explicit expression for its probability density in terms of sums of convolutions of known functions. Under additional regularity conditions on the Lévy measure of the studied processes, we also provide asymptotic results as $u\to-\infty$ for the distribution function F(u) of the negative Wiener–Hopf factor. We illustrate our results in some particular examples.


2019 ◽  
Vol 19 (05) ◽  
pp. 1950040 ◽  
Author(s):  
Mogtaba Mohammed

In this paper, we use the periodic unfolding method and Prokhorov’s and Skorokhod’s probabilistic compactness results to obtain homogenization and corrector results for stochastic partial differential equations (PDEs) with periodically oscillating coefficients. We show the convergence of the solutions of the original problems to the solutions of the homogenized problems. In contrast to the two-scale convergence method, the corrector results obtained in this paper are without any additional regularity assumptions on the solutions of the original problems


2018 ◽  
Vol 2020 (23) ◽  
pp. 9769-9796
Author(s):  
Riddhipratim Basu ◽  
Amir Dembo ◽  
Naomi Feldheim ◽  
Ofer Zeitouni

Abstract We show that for any centered stationary Gaussian process of absolutely integrable covariance, whose spectral measure has compact support, or finite exponential moments (and some additional regularity), the number of zeroes of the process in $[0,T]$ is within $\eta T$ of its mean value, up to an exponentially small in $T$ probability.


2018 ◽  
Vol 40 (1) ◽  
pp. 29-86 ◽  
Author(s):  
Andrea Bonito ◽  
Vivette Girault ◽  
Endre Süli

AbstractWe construct a finite element approximation of a strain-limiting elastic model on a bounded open domain in $\mathbb{R}^d$, $d \in \{2,3\}$. The sequence of finite element approximations is shown to exhibit strong convergence to the unique weak solution of the model. A rate of convergence for the sequence of finite element approximations is shown provided that the material parameters featuring in the model are Lipschitz continuous and that the exact solution possesses additional regularity. A rate of convergence for the sequence of finite element approximations is shown provided that the material parameters featuring in the model are Lipschitz continuous and that the exact solution possesses additional regularity. An iterative algorithm is constructed for the solution of the system of nonlinear algebraic equations that arises from the finite element approximation. An appealing feature of the iterative algorithm is that it decouples the monotone and linear elastic parts of the nonlinearity in the model. In particular, our choice of piecewise constant approximation for the stress tensor (and continuous piecewise linear approximation for the displacement) allows us to compute the monotone part of the nonlinearity by solving an algebraic system with $d(d+1)/2$ unknowns independently on each element in the subdivision of the computational domain. The theoretical results are illustrated by numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document