effective equation
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 42)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Xiankai Pang

We show that the accelerating expansion phase of the universe can emerge from the group field theory formalism, a candidate theory of quantum gravity. The cosmological evolution can be extracted from condensate states using mean field approximation, in a form of modified FLRW equations. By introducing an effective equation of state w, we can reveal the relevant features of the evolution, and show that with proper choice of parameters, w will approach to −1, corresponds to the behaviour of cosmological constant, results in a late time acceleration and leads to de Sitter spacetime asymptotically.


2021 ◽  
Vol 2021 (12) ◽  
pp. 040
Author(s):  
Daniele Oriti ◽  
Xiankai Pang

Abstract We analyse the emergent cosmological dynamics corresponding to the mean field hydrodynamics of quantum gravity condensates, in the group field theory formalism. We focus in particular on the cosmological effects of fundamental interactions, and on the contributions from different quantum geometric modes. The general consequence of such interactions is to produce an accelerated expansion of the universe, which can happen both at early times, after the quantum bounce predicted by the model, and at late times. Our main result is that, while this fails to give a compelling inflationary scenario in the early universe, it produces naturally a phantom-like dark energy dynamics at late times, compatible with cosmological observations. By recasting the emergent cosmological dynamics in terms of an effective equation of state, we show that it can generically cross the phantom divide, purely out of quantum gravity effects without the need of any additional phantom matter. Furthermore, we show that the dynamics avoids any Big Rip singularity, approaching instead a de Sitter universe asymptotically.


2021 ◽  
Vol 923 (2) ◽  
pp. 212
Author(s):  
Satadru Bag ◽  
Varun Sahni ◽  
Arman Shafieloo ◽  
Yuri Shtanov

Abstract Braneworld models with induced gravity exhibit phantom-like behavior of the effective equation of state of dark energy. They can, therefore, naturally accommodate higher values of H 0, preferred by recent local measurements while satisfying the cosmic microwave background constraints. We test the background evolution in such phantom braneworld scenarios with the current observational data sets. We find that the phantom braneworld prefers a higher value of H 0 even without the R19 prior, thereby providing a much better fit to the local measurements. Although this braneworld model cannot fully satisfy all combinations of cosmological observables, among existing dark energy candidates the phantom brane provides one of the most compelling explanations of cosmic evolution.


2021 ◽  
Vol 922 (2) ◽  
pp. 136
Author(s):  
Yunyang Li ◽  
Adam D. Hincks ◽  
Stefania Amodeo ◽  
Elia S. Battistelli ◽  
J. Richard Bond ◽  
...  

Abstract The Sunyaev–Zel’dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range 0.07 ≲ z ≲ 1.4 from the largest SZ-selected cluster sample to date from the Atacama Cosmology Telescope, we provide new constraints on the deviation of CMB temperature evolution from the standard model α = 0.017 − 0.032 + 0.029 , where T ( z ) = T 0 1 + z 1 − α . This result is consistent with no deviation from the standard adiabatic model. Combining it with previous, independent data sets we obtain a joint constraint of α = −0.001 ± 0.012. Attributing deviation from adiabaticity to the decay of dark energy, this result constrains its effective equation of state w eff = − 0.998 − 0.010 + 0.008 .


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1413
Author(s):  
Sung-Yong Kang ◽  
Deokhee Won ◽  
Jong-Sup Park ◽  
Young-Jong Kang ◽  
Seungjun Kim

In recent years, there has been a growing demand for renewable energy that is free of power generation by products to address the global climate and resource limitation crises. Wind power generation is maximizing efficiency through constant research and development, and as the use of large capacity turbines increases, the scale of supporting structure also increases. The structural maintenance of hollow towers, the supporting structure of wind turbines, requires the installation of an opening through which workers can access the tower to check corrosion, cracks, and damage to the tower body. However, these access points can affect the buckling strength of the tower structures due to section loss. In this study, the effects of the opening on the structural stability and ultimate strength of a large diameter cylindrical shell, which could be used as a wind turbine supporting tower structure, were studied through elastic buckling and nonlinear analyses. Based on the analytical results, the effects of the thickness of a collar stiffener around the opening on the structure’s ultimate strength were investigated. The results were compared to the design criteria, and through regression analysis, an effective equation to determine the collar stiffener’s thickness for large diameter cylindrical shells was proposed based on an opening that satisfied the design strength criteria.


Author(s):  
Andrés Lizardo ◽  
Mario H Amante ◽  
Miguel A García-Aspeitia ◽  
Juan Magaña ◽  
V Motta

Abstract Using a new sub-sample of observed strong gravitational lens systems, for the first time, we present the equation for the angular diameter distance in the y-redshift scenario for cosmography and use it to test the cosmographic parameters. In addition, we also use the observational Hubble data from cosmic chronometers and a Joint analysis of both data is performed. Among the most important conclusions are that this new analysis for cosmography using Strong Lensing Systems is equally competitive to constrain the cosmographic parameters as others presented in literature. Additionally, we present the reconstruction of the effective equation of state inferred from our samples, showing that at z = 0 those reconstructions from Strong Lensing Systems and Joint analysis are in concordance with the standard model of cosmology.


Author(s):  
Richard M. Höfer ◽  
Karina Kowalczyk ◽  
Sebastian Schwarzacher

We consider the homogenization limit of the compressible barotropic Navier–Stokes equations in a three-dimensional domain perforated by periodically distributed identical particles. We study the regime of particle sizes and distances such that the volume fraction of particles tends to zero but their resistance density tends to infinity. Assuming that the Mach number is decreasing with a certain rate, the rescaled velocity and pressure of the microscopic system converges to the solution of an effective equation which is given by Darcy’s law. The range of sizes of particles we consider is exactly the same which leads to Darcy’s law in the homogenization limit of incompressible fluids. Unlike previous results for the Darcy regime we estimate the deficit related to the pressure approximation via the Bogovskiĭ operator. This allows for more flexible estimates of the pressure in Lebesgue and Sobolev spaces and allows to proof convergence results for all barotropic exponents [Formula: see text].


Author(s):  
N. N. Konobeeva ◽  
M. B. Belonenko

In this paper, we investigate the evolution of electromagnetic waves in a nonlinear anisotropic optical medium with carbon nanotubes (CNTs). Based on Maxwell’s equation, an effective equation is obtained for the vector potential of the electromagnetic field, which takes into account different values of the velocity and polarization with two directions. The dependence of the pulse shape on the crystal type, as well as the angle between the electric field and the CNTs axis is revealed.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Simran Arora ◽  
Abhishek Parida ◽  
P. K. Sahoo

AbstractNew high-precision observations are now possible to constrain different gravity theories. To examine the accelerated expansion of the Universe, we used the newly proposed f(Q, T) gravity, where Q is the non-metricity, and T is the trace of the energy–momentum tensor. The investigation is carried out using a parameterized effective equation of state with two parameters, m and n. We have also considered the linear form of $$f(Q,T)= Q+bT$$ f ( Q , T ) = Q + b T , where b is constant. By constraining the model with the recently published 1048 Pantheon sample, we were able to find the best fitting values for the parameters b, m, and n. The model appears to be in good agreement with the observations. Finally, we analyzed the behavior of the deceleration parameter and equation of state parameter. The results support the feasibility of f(Q, T) as a promising theory of gravity, illuminating a new direction towards explaining the Universe dark sector.


Sign in / Sign up

Export Citation Format

Share Document