The estimation of missing observations in related time series data: further reuslts

1989 ◽  
Vol 14 (4) ◽  
pp. 973-981
Author(s):  
Keith C. Brown ◽  
K. Rao Kadiyala
Risks ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 97 ◽  
Author(s):  
Gareth Peters

The paper addresses three objectives: the first is a presentation and overview of some important developments in quantile times series approaches relevant to demographic applications—secondly, development of a general framework to represent quantile regression models in a unifying manner, which can further enhance practical extensions and assist in formation of connections between existing models for practitioners. In this regard, the core theme of the paper is to provide perspectives to a general audience of core components that go into construction of a quantile time series model. The third objective is to compare and discuss the application of the different quantile time series models on several sets of interesting demographic and mortality related time series data sets. This has relevance to life insurance analysis and the resulting exploration undertaken includes applications in mortality, fertility, births and morbidity data for several countries, with a more detailed analysis of regional data in England, Wales and Scotland.


2020 ◽  
Vol 10 (7) ◽  
pp. 2322 ◽  
Author(s):  
Pedro Lara-Benítez ◽  
Manuel Carranza-García ◽  
José M. Luna-Romera ◽  
José C. Riquelme

Modern energy systems collect high volumes of data that can provide valuable information about energy consumption. Electric companies can now use historical data to make informed decisions on energy production by forecasting the expected demand. Many deep learning models have been proposed to deal with these types of time series forecasting problems. Deep neural networks, such as recurrent or convolutional, can automatically capture complex patterns in time series data and provide accurate predictions. In particular, Temporal Convolutional Networks (TCN) are a specialised architecture that has advantages over recurrent networks for forecasting tasks. TCNs are able to extract long-term patterns using dilated causal convolutions and residual blocks, and can also be more efficient in terms of computation time. In this work, we propose a TCN-based deep learning model to improve the predictive performance in energy demand forecasting. Two energy-related time series with data from Spain have been studied: the national electric demand and the power demand at charging stations for electric vehicles. An extensive experimental study has been conducted, involving more than 1900 models with different architectures and parametrisations. The TCN proposal outperforms the forecasting accuracy of Long Short-Term Memory (LSTM) recurrent networks, which are considered the state-of-the-art in the field.


Author(s):  
Pedro Lara-Benítez ◽  
Manuel Carranza-García ◽  
José M. Luna-Romera ◽  
José C. Riquelme

Modern energy systems collect high volumes of data that can provide valuable information about energy consumption. Electric companies can now use historical data to make informed decisions on energy production by forecasting the expected demand. Many deep learning models have been proposed to deal with these type of time series forecasting problems. Deep neural networks, such as recurrent or convolutional, can automatically capture complex patterns in time series data and provide accurate predictions. In particular, Temporal Convolutional Networks (TCN) are a specialised architecture that has advantages over recurrent networks for forecasting tasks. TCNs are able to extract long-term patterns using dilated causal convolutions and residual blocks, and can also be more efficient in terms of computation time. In this work, we propose a TCN-based deep learning model to improve the predictive performance in energy demand forecasting. Two energy-related time series with data from Spain have been studied: the national electric demand, and the power demand at charging stations for electric vehicles. An extensive experimental study has been conducted, involving more than 1900 models with different architectures and parametrisations. The TCN proposal outperforms the forecasting accuracy of Long Short-Term Memory (LSTM) recurrent networks, which are considered the state-of-the-art in the field.


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Sign in / Sign up

Export Citation Format

Share Document