Empirical Bayes Testing for the Mean Lifetime of Exponential Distributions: Unequal Sample Sizes Case

2006 ◽  
Vol 35 (8) ◽  
pp. 1409-1428 ◽  
Author(s):  
Tachen Liang
1993 ◽  
Vol 58 (2) ◽  
pp. 234-243 ◽  
Author(s):  
Viliam Klimo ◽  
Martina Bittererová ◽  
Stanislav Biskupič ◽  
Ján Urban ◽  
Miroslav Micov

The reaction O + OH → O2 + H in conditions of combustion of hydrocarbons and polymers was modelled by using the method of quasiclassical trajectories. The potential energy surface was determined by the multiconfiguration interaction method and fitted with the analytical form of the extended LEPS function. Attention was paid to the mean values of the vibrational and rotational quantum numbers of O2 molecules and their temperature dependence. The temperature dependence of the mean lifetime of the OOH collision complex was also examined. The calculated rate constants were analyzed and compared with the experimental data over the temperature region of the combustion processes.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Louis M. Houston

We derive a general equation for the probability that a measurement falls within a range of n standard deviations from an estimate of the mean. So, we provide a format that is compatible with a confidence interval centered about the mean that is naturally independent of the sample size. The equation is derived by interpolating theoretical results for extreme sample sizes. The intermediate value of the equation is confirmed with a computational test.


2017 ◽  
Vol 9 (3) ◽  
pp. 46
Author(s):  
Carmine Cataldo

This paper aims to qualitatively summarize the results up until now obtained in investigating the compatibility between the absoluteness of time and several well-known phenomena, such as the alleged increase of the mean lifetime of muons and the so-called relativistic corrections for GPS, whose explanation is commonly provided by resorting to Einstein’s Relativity. To make the discussion more flowing, we have herein preferred to completely avoid the writing of equations. All the analytical solutions, as well as several explicative figures, can be found in the first six articles cited in the references, drafted by the same author of this manuscript.


2002 ◽  
Vol 159 (5) ◽  
pp. 530-552 ◽  
Author(s):  
Karin Frank ◽  
Christian Wissel

2016 ◽  
Vol 13 (4) ◽  
pp. 707-713
Author(s):  
Baghdad Science Journal

In this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).


Sign in / Sign up

Export Citation Format

Share Document