process monitoring
Recently Published Documents


TOTAL DOCUMENTS

3849
(FIVE YEARS 931)

H-INDEX

87
(FIVE YEARS 14)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Angelo Marcio Oliveira Sant’Anna

PurposeE-waste management can reduce relevant impact of the business activity without affecting reliability, quality or performance. Statistical process monitoring is an effective way for managing reliability and quality to devices in manufacturing processes. This paper proposes an approach for monitoring the proportion of e-waste devices based on Beta regression model and particle swarm optimization. A statistical process monitoring scheme integrating residual useful life techniques for efficient monitoring of e-waste components or equipment was developed.Design/methodology/approachAn approach integrating regression method and particle swarm optimization algorithm was developed for increasing the accuracy of regression model estimates. The control chart tools were used for monitoring the proportion of e-waste devices from fault detection of electronic devices in manufacturing process.FindingsThe results showed that the proposed statistical process monitoring was an excellent reliability and quality scheme for monitoring the proportion of e-waste devices in toner manufacturing process. The optimized regression model estimates showed a significant influence of the process variables for both individually injection rate and toner treads and the interactions between injection rate, toner treads, viscosity and density.Originality/valueThis research is different from others by providing an approach for modeling and monitoring the proportion of e-waste devices. Statistical process monitoring can be used to monitor waste product in manufacturing. Besides, the key contribution in this study is to develop different models for fault detection and identify any change point in the manufacturing process. The optimized model used can be replicated to other Electronic Industry and allows support of a satisfactory e-waste management.


Author(s):  
Sven Knoth ◽  
Mahmoud A. Mahmoud ◽  
Nesma A. Saleh ◽  
Victor G. Tercero‐Gómez ◽  
William H. Woodall

Author(s):  
Raven T. Reisch ◽  
Tobias Hauser ◽  
Benjamin Lutz ◽  
Alexandros Tsakpinis ◽  
Dominik Winter ◽  
...  

AbstractWire Arc Additive Manufacturing allows the cost-effective manufacturing of customized, large-scale metal parts. As the post-process quality assurance of large parts is costly and time-consuming, process monitoring is inevitable. In the present study, a context-aware monitoring solution was investigated by integrating machine, temporal, and spatial context in the data analysis. By analyzing the voltage patterns of each cycle in the oscillating cold metal transfer process with a deep neural network, temporal context was included. Spatial context awareness was enabled by building a digital twin of the manufactured part using an Octree as spatial indexing data structure. By means of the spatial context awareness, two quality metrics—the defect expansion and the local anomaly density—were introduced. The defect expansion was tracked in-process by assigning detected defects to the same defect cluster in case of spatial correlation. The local anomaly density was derived by defining a spherical region of interest which enabled the detection of aggregations of anomalies. By means of the context aware monitoring system, defects were detected in-process with a higher sensitivity as common defect detectors for welding applications, showing less false-positives and false-negatives. A quantitative evaluation of defect expansion and densities of various defect types such as pore nests was enabled.


Sign in / Sign up

Export Citation Format

Share Document