Non uniform exponential bounds on normal approximation by Stein’s method and monotone size bias couplings

2017 ◽  
Vol 47 (5) ◽  
pp. 1117-1132
Author(s):  
Kamonrat Kamjornkittikoon ◽  
Kritsana Neammanee ◽  
Nattakarn Chaidee
1996 ◽  
Vol 33 (01) ◽  
pp. 1-17 ◽  
Author(s):  
Larry Goldstein ◽  
Yosef Rinott

Stein's method is used to obtain two theorems on multivariate normal approximation. Our main theorem, Theorem 1.2, provides a bound on the distance to normality for any non-negative random vector. Theorem 1.2 requires multivariate size bias coupling, which we discuss in studying the approximation of distributions of sums of dependent random vectors. In the univariate case, we briefly illustrate this approach for certain sums of nonlinear functions of multivariate normal variables. As a second illustration, we show that the multivariate distribution counting the number of vertices with given degrees in certain random graphs is asymptotically multivariate normal and obtain a bound on the rate of convergence. Both examples demonstrate that this approach may be suitable for situations involving non-local dependence. We also present Theorem 1.4 for sums of vectors having a local type of dependence. We apply this theorem to obtain a multivariate normal approximation for the distribution of the random p-vector, which counts the number of edges in a fixed graph both of whose vertices have the same given color when each vertex is colored by one of p colors independently. All normal approximation results presented here do not require an ordering of the summands related to the dependence structure. This is in contrast to hypotheses of classical central limit theorems and examples, which involve for example, martingale, Markov chain or various mixing assumptions.


1996 ◽  
Vol 33 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Larry Goldstein ◽  
Yosef Rinott

Stein's method is used to obtain two theorems on multivariate normal approximation. Our main theorem, Theorem 1.2, provides a bound on the distance to normality for any non-negative random vector. Theorem 1.2 requires multivariate size bias coupling, which we discuss in studying the approximation of distributions of sums of dependent random vectors. In the univariate case, we briefly illustrate this approach for certain sums of nonlinear functions of multivariate normal variables. As a second illustration, we show that the multivariate distribution counting the number of vertices with given degrees in certain random graphs is asymptotically multivariate normal and obtain a bound on the rate of convergence. Both examples demonstrate that this approach may be suitable for situations involving non-local dependence. We also present Theorem 1.4 for sums of vectors having a local type of dependence. We apply this theorem to obtain a multivariate normal approximation for the distribution of the random p-vector, which counts the number of edges in a fixed graph both of whose vertices have the same given color when each vertex is colored by one of p colors independently. All normal approximation results presented here do not require an ordering of the summands related to the dependence structure. This is in contrast to hypotheses of classical central limit theorems and examples, which involve for example, martingale, Markov chain or various mixing assumptions.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Nahathai Rerkruthairat

The Berry-Esseen bound for the random variable based on the sum of squared sample correlation coefficients and used to test the complete independence in high diemensions is shown by Stein’s method. Although the Berry-Esseen bound can be applied to all real numbers in R, a nonuniform bound at a real number z usually provides a sharper bound if z is fixed. In this paper, we present the first version of a nonuniform bound on a normal approximation for this random variable with an optimal rate of 1/0.5+|z|·O1/m by using Stein’s method.


Bernoulli ◽  
2014 ◽  
Vol 20 (3) ◽  
pp. 1404-1431 ◽  
Author(s):  
Xiao Fang

2009 ◽  
Vol 147 (1) ◽  
pp. 95-114 ◽  
Author(s):  
ADAM J. HARPER

AbstractIn this paper, we apply Stein's method for distributional approximations to prove a quantitative form of the Erdös–Kac Theorem. We obtain our best bound on the rate of convergence, on the order of log log log n (log log n)−1/2, by making an intermediate Poisson approximation; we believe that this approach is simpler and more probabilistic than others, and we also obtain an explicit numerical value for the constant implicit in the bound. Different ways of applying Stein's method to prove the Erdös–Kac Theorem are discussed, including a Normal approximation argument via exchangeable pairs, where the suitability of a Poisson approximation naturally suggests itself.


Author(s):  
Louis H.Y. Chen ◽  
Larry Goldstein ◽  
Qi-Man Shao

Sign in / Sign up

Export Citation Format

Share Document