Sedimentary organic matter diagenesis and its relation to the carbon budget of tropical Amazon floodplain lakes

1984 ◽  
Vol 22 (2) ◽  
pp. 1299-1304 ◽  
Author(s):  
Allan H. Devol ◽  
Thomas M. Zaret ◽  
Bruce R. Forsberg
The Holocene ◽  
2013 ◽  
Vol 23 (12) ◽  
pp. 1903-1914 ◽  
Author(s):  
Luciane S Moreira ◽  
Patricia Moreira-Turcq ◽  
Bruno Turcq ◽  
Renato C Cordeiro ◽  
J-H Kim ◽  
...  

2016 ◽  
Vol 13 (2) ◽  
pp. 467-482 ◽  
Author(s):  
R. L. Sobrinho ◽  
M. C. Bernardes ◽  
G. Abril ◽  
J.-H. Kim ◽  
C. I Zell ◽  
...  

Abstract. In this study, we investigated the seasonal and spatial pattern of sedimentary organic matter (SOM) in five floodplain lakes of the central Amazon basin (Cabaliana, Janauaca, Canaçari, Mirituba and Curuai) which have different morphologies, hydrodynamics and vegetation coverages. Surface sediments were collected in four hydrological seasons: low water (LW), rising water (RW), high water (HW) and falling water (FW) in 2009 and 2010. We investigated commonly used bulk geochemical tracers such as the C : N ratio and the stable isotopic composition of organic carbon (δ13Corg). These results were compared with lignin phenol parameters as an indicator of vascular plant detritus and branched glycerol dialkyl glycerol tetraethers (brGDGTs) to trace the input of soil organic matter (OM) from land to the aquatic settings. We also applied the crenarchaeol as an indicator of aquatic (rivers and lakes) OM. Our data showed that during the RW and FW seasons, the surface sediments were enriched in lignin and brGDGTs in comparison to other seasons. Our study also indicated that floodplain lake sediments primarily consisted of allochthonous, C3 plant-derived OM. However, a downstream increase in C4 macrophyte-derived OM contribution was observed along the gradient of increasing open waters – i.e., from upstream to downstream. Accordingly, we attribute the temporal and spatial difference in SOM composition to the hydrological dynamics between the floodplain lakes and the surrounding flooded forests.


2015 ◽  
Vol 12 (11) ◽  
pp. 8747-8787 ◽  
Author(s):  
R. L. Sobrinho ◽  
M. C. Bernardes ◽  
G. Abril ◽  
J.-H. Kim ◽  
C. I. Zell ◽  
...  

Abstract. In this study, we investigated the seasonal and spatial pattern of sedimentary organic matter (SOM) in five floodplain lakes of the central Amazon basin (Cabaliana, Janauaca, Canaçari, Miratuba, and Curuai) which have different morphologies, hydrodynamics and vegetation coverages. Surface sediments were collected in four hydrological seasons: low water (LW), rising water (RW), high water (HW) and falling water (FW) in 2009 and 2010. We investigated commonly used bulk geochemical tracers such as the C : N ratio and the stable isotopic composition of organic carbon (δ13Corg). These results were compared with lignin-phenol parameters as an indicator of vascular plant detritus and branched glycerol dialkyl glycerol tetraethers (brGDGTs) to trace the input of soil organic matter (OM) from land to the aquatic settings. We also applied the isoprenoid GDGT (iGDGT) crenarchaeol as an indicator of riverine suspended particulate organic matter (SPOM). Our data showed that during the RW and FW seasons, the surface sediments were enriched in lignin and brGDGTs in comparison to other seasons. Our study also indicated that floodplain lake sediments primarily consisted of allochthonous, C3 plant-derived OM. However, a downstream increase in C4 macrophyte derived OM contribution was observed along the gradient of increasing open waters, i.e. from upstream to downstream. Accordingly, we attribute temporal and spatial difference in SOM composition to the hydrological dynamics between the floodplain lakes and the surrounding flooded forests.


2021 ◽  
pp. 104287
Author(s):  
Alexander A. Lopes ◽  
Vinícius B. Pereira ◽  
Leonardo Amora-Nogueira ◽  
Humberto Marotta ◽  
Luciane S. Moreira ◽  
...  

2021 ◽  
Vol 230 ◽  
pp. 103931
Author(s):  
Jin-E Wei ◽  
Yan Chen ◽  
Jian Wang ◽  
Shi-Bo Yan ◽  
Hong-Hai Zhang ◽  
...  

1984 ◽  
Vol 22 (2) ◽  
pp. 1283-1287 ◽  
Author(s):  
Sally MacIntyre ◽  
John M. Melack

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Wen ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

The upper Ordovician-lower Silurian shale has always been the main target of marine shale gas exploration in southern China. However, the shale gas content varies greatly across different regions. The organic matter content is one of the most important factors in determining gas content; therefore, determining the enrichment mechanisms of organic matter is an important problem that needs to be solved urgently. In this paper, upper Ordovician-lower Silurian shale samples from the X-1 and Y-1 wells that are located in the southern Sichuan area of the upper Yangtze region and the northwestern Jiangxi area of the lower Yangtze region, respectively, are selected for analysis. Based on the core sample description, well logging data analysis, mineral and elemental composition analysis, silicon isotope analysis, and TOC (total organic carbon) content analysis, the upper Ordovician-lower Silurian shale is studied to quantitatively calculate its content of excess silicon. Subsequently, the results of elemental analysis and silicon isotope analysis are used to determine the origin of excess silicon. Finally, we used U/Th to determine the characteristics of the redox environment and the relationship between excess barium and TOC content to judge paleoproductivity and further studied the mechanism underlying sedimentary organic matter enrichment in the study area. The results show that the excess silicon from the upper Ordovician-lower Silurian shale in the upper Yangtze area is derived from biogenesis. The sedimentary water body is divided into an oxygen-rich upper water layer that has higher paleoproductivity and a strongly reducing lower water that is conducive to the preservation of sedimentary organic matter. Thus, for the upper Ordovician-lower Silurian shale in the upper Yangtze region, exploration should be conducted in the center of the blocks with high TOC contents and strongly reducing water body. However, the excess silicon in the upper Ordovician-lower Silurian shale of the lower Yangtze area originates from hydrothermal activity that can enhance the reducibility of the bottom water and carry nutrients from the crust to improve paleoproductivity and enrich sedimentary organic matter. Therefore, for the upper Ordovician-lower Silurian shale in the lower Yangtze region, exploration should be conducted in the blocks near the junction of the two plates where hydrothermal activity was active.


1996 ◽  
Vol 41 (3) ◽  
pp. 488-497 ◽  
Author(s):  
S. Peulvé ◽  
M.-A. Sicre ◽  
A. Saliot ◽  
J. W. De Leeuw ◽  
M. Baas

Sign in / Sign up

Export Citation Format

Share Document