silicon isotope
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 46)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 923 (1) ◽  
pp. 94
Author(s):  
Ke Zhu ◽  
Frédéric Moynier ◽  
Conel M. O’D. Alexander ◽  
Jemma Davidson ◽  
Devin L. Schrader ◽  
...  

Abstract We investigated the stable isotope fractionation of chromium (Cr) for a panorama of chondrites, including EH and EL enstatite chondrites and their chondrules and different phases (by acid leaching). We observed that chondrites have heterogeneous δ 53Cr values (per mil deviation of the 53Cr/52Cr from the NIST SRM 979 standard), which we suggest reflect different physical conditions in the different chondrite accretion regions. Chondrules from a primitive EH3 chondrite (SAH 97096) possess isotopically heavier Cr relative to their host bulk chondrite, which may be caused by Cr evaporation in a reduced chondrule-forming region of the protoplanetary disk. Enstatite chondrites show a range of bulk δ 53Cr values that likely result from variable mixing of isotopically different sulfide-silicate-metal phases. The bulk silicate Earth (δ 53Cr = –0.12 ± 0.02‰, 2SE) has a lighter Cr stable isotope composition compared to the average δ 53Cr value of enstatite chondrites (–0.05 ± 0.02‰, 2SE, when two samples out of 19 are excluded). If the bulk Earth originally had a Cr isotopic composition that was similar to the average enstatite chondrites, this Cr isotope difference may be caused by evaporation under equilibrium conditions from magma oceans on Earth or its planetesimal building blocks, as previously suggested to explain the magnesium and silicon isotope differences between Earth and enstatite chondrites. Alternatively, chemical differences between Earth and enstatite chondrite can result from thermal processes in the solar nebula and the enstatite chondrite-Earth, which would also have changed the Cr isotopic composition of Earth and enstatite chondrite parent body precursors.


Author(s):  
Zhen Zeng ◽  
Yu‐Fang Sun ◽  
Hao‐Ye Tang ◽  
Guo‐Xing Lu ◽  
Lin Yang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Mark A. Brzezinski ◽  
Ivia Closset ◽  
Janice L. Jones ◽  
Gregory F. de Souza ◽  
Colin Maden

The silicon isotope composition of silicic acid, δ30Si(OH)4, in the deep Arctic Ocean is anomalously heavy compared to all other deep ocean basins. To further evaluate the mechanisms leading to this condition, δ30Si(OH)4 was examined on US GEOTRACES section GN01 from the Bering Strait to the North Pole. Isotope values in the polar mixed layer showed a strong influence of the transpolar drift. Drift waters contained relatively high [Si(OH)4] with heavy δ30Si(OH)4 consistent with the high silicate of riverine source waters and strong biological Si(OH)4 consumption on the Eurasian shelves. The maximum in silicic acid concentration, [Si(OH)4], within the double halocline of the Canada Basin formed a local minimum in δ30Si(OH)4 that extended across the Canada Basin, reflecting the high-[Si(OH)4] Pacific source waters and benthic inputs of Si(OH)4 in the Chukchi Sea. δ30Si(OH)4 became lighter with the increase in [Si(OH)4] in intermediate and deep waters; however, both Canada Basin deep water and Eurasian Basin deep water were heavier than deep waters from other ocean basins. A preliminary isotope budget incorporating all available Arctic δ30Si(OH)4 data confirms the importance of isotopically heavy inflows in creating the anomalous deep Arctic Si isotope signature, but also reveals a surprising similarity in the isotopic composition of the major inflows compared to outflows across the main gateways connecting the Arctic with the Pacific and the Atlantic. This similarity implies a major role of biological productivity and opal burial in removing light isotopes entering the Arctic Ocean from rivers.


2021 ◽  
pp. 1-19
Author(s):  
Ty J. Prosa ◽  
Edward Oltman

Abstract Atom probe tomography (APT) is a technique that has expanded significantly in terms of adoption, dataset size, and quality during the past 15 years. The sophistication used to ensure ultimate analysis precision has not kept pace. The earliest APT datasets were small enough that deadtime and background considerations for processing mass spectrum peaks were secondary. Today, datasets can reach beyond a billion atoms so that high precision data processing procedures and corrections need to be considered to attain reliable accuracy at the parts-per-million level. This paper considers options for mass spectrum ranging, deadtime corrections, and error propagation as applied to an extrinsic-silicon standard specimen to attain agreement for silicon isotopic fraction measurements across multiple instruments, instrument types, and acquisition conditions. Precision consistent with those predicted by counting statistics is attained showing agreement in silicon isotope fraction measurements across multiple instruments, instrument platforms, and analysis conditions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Patricia Grasse ◽  
Kristin Haynert ◽  
Kristin Doering ◽  
Sonja Geilert ◽  
Janice L. Jones ◽  
...  

The upwelling area off Peru is characterized by exceptionally high rates of primary productivity, mainly dominated by diatoms, which require dissolved silicic acid (dSi) to construct their frustules. The silicon isotope compositions of dissolved silicic acid (δ30SidSi) and biogenic silica (δ30SibSi) in the ocean carry information about dSi utilization, dissolution, and water mass mixing. Diatoms are preserved in the underlying sediments and can serve as archives for past nutrient conditions. However, the factors influencing the Si isotope fractionation between diatoms and seawater are not fully understood. More δ30SibSi data in today’s ocean are required to validate and improve the understanding of paleo records. Here, we present the first δ30SibSi data (together with δ30SidSi) from the water column in the Peruvian Upwelling region. Samples were taken under strong upwelling conditions and the bSi collected from seawater consisted of more than 98% diatoms. The δ30SidSi signatures in the surface waters were higher (+1.7‰ to +3.0‰) than δ30SibSi (+1.0‰ to +2‰) with offsets between diatoms and seawater (Δ30Si) ranging from −0.4‰ to −1.0‰. In contrast, δ30SidSi and δ30SibSi signatures were similar in the subsurface waters of the oxygen minimum zone (OMZ) as a consequence of a decrease in δ30SidSi. A strong relationship between δ30SibSi and [dSi] in surface water samples supports that dSi utilization of the available pool (70 and 98%) is the main driver controlling δ30SibSi. A comparison of δ30SibSi samples from the water column and from underlying core-top sediments (δ30SibSi_sed.) in the central upwelling region off Peru (10°S and 15°S) showed good agreement (δ30SibSi_sed. = +0.9‰ to +1.7‰), although we observed small differences in δ30SibSi depending on the diatom size fraction and diatom assemblage. A detailed analysis of the diatom assemblages highlights apparent variability in fractionation among taxa that has to be taken into account when using δ30SibSi data as a paleo proxy for the reconstruction of dSi utilization in the region.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kristin Doering ◽  
Claudia Ehlert ◽  
Katharina Pahnke ◽  
Martin Frank ◽  
Ralph Schneider ◽  
...  

The global silicon (Si) cycle plays a critical role in regulating the biological pump and the carbon cycle in the oceans. A promising tool to reconstruct past dissolved silicic acid (DSi) concentrations is the silicon isotope signature of radiolaria (δ30Sirad), siliceous zooplankton that dwells at subsurface and intermediate water depths. However, to date, only a few studies on sediment δ30Sirad records are available. To investigate its applicability as a paleo proxy, we compare the δ30Sirad of different radiolarian taxa and mixed radiolarian samples from surface sediments off Peru to the DSi distribution and its δ30Si signatures (δ30SiDSi) along the coast between the equator and 15°S. Three different radiolarian taxa were selected according to their specific habitat depths of 0–50 m (Acrosphaera murrayana), 50–100 m (Dictyocoryne profunda/truncatum), and 200–400 m (Stylochlamydium venustum). Additionally, samples containing a mix of species from the bulk assemblage covering habitat depths of 0 to 400 m have been analyzed for comparison. We find distinct δ30Sirad mean values of +0.70 ± 0.17‰ (Acro; 2 SD), +1.61 ± 0.20 ‰ (Dictyo), +1.19 ± 0.31 ‰ (Stylo) and +1.04 ± 0.19 ‰ (mixed radiolaria). The δ30Si values of all individual taxa and the mixed radiolarian samples indicate a significant (p < 0.05) inverse relationship with DSi concentrations of their corresponding habitat depths. However, only δ30Si of A. murrayana are correlated to DSi concentrations under normally prevailing upwelling conditions. The δ30Si of Dictyocoryne sp., Stylochlamydium sp., and mixed radiolaria are significantly correlated to the lower DSi concentrations either associated with nutrient depletion or shallower habitat depths. Furthermore, we calculated the apparent Si isotope fractionation between radiolaria and DSi (Δ30Si ∼ 30ε = δ 30Sirad − δ 30SiDSi) and obtained values of −1.18 ± 0.17 ‰ (Acro), −0.05 ± 0.25 ‰ (Dictyo), −0.34 ± 0.27 ‰ (Stylo), and −0.62 ± 0.26 ‰ (mixed radiolaria). The significant differences in Δ30Si between the order of Nassellaria (A. murrayana) and Spumellaria (Dictyocoryne sp. and Stylochlamydium sp.) may be explained by order-specific Si isotope fractionation during DSi uptake, similar to species-specific fractionation observed for diatoms. Overall, our study provides information on the taxon-specific fractionation factor between radiolaria and seawater and highlights the importance of taxonomic identification and separation to interpret down-core records.


Author(s):  
Camille Delvigne ◽  
Abel Guihou ◽  
Jan A. Schuessler ◽  
Paul Savage ◽  
Franck Poitrasson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document