dissolved organic matter
Recently Published Documents





2022 ◽  
Vol 46 ◽  
pp. 102544
Hengfeng Zhang ◽  
Yucong Zheng ◽  
Xiaochang C. Wang ◽  
Yongkun Wang ◽  
Mawuli Dzakpasu

2022 ◽  
Vol 19 (1) ◽  
pp. 187-200
Thibault Lambert ◽  
Pascal Perolo ◽  
Nicolas Escoffier ◽  
Marie-Elodie Perga

Abstract. The influence of human activities on the role of inland waters in the global carbon (C) cycle is poorly constrained. In this study, we investigated the impact of human land use on the sources and biodegradation of dissolved organic matter (DOM) and its potential impact on bacterial respiration in 10 independent catchments of the Lake Geneva basin. Sites were selected along a gradient of human disturbance (agriculture and urbanization) and were visited twice during the winter high-flow period. Bacterial respiration and DOM bioavailability were measured in the laboratory through standardized dark bioassays, and the influence of human land uses on DOM sources, composition and reactivity was assessed from fluorescence spectroscopy. Bacterial respiration was higher in agro-urban streams but was related to a short-term bioreactive pool (0–6 d of incubation) of autochthonous origin, whose relative contribution to the total DOM pool increased with the degree of human disturbance. On the other hand, the degradation of a long-term (6–28 d) bioreactive pool related to terrestrial DOM was independent from the catchment land use and did not contribute substantially to aquatic bacterial respiration. From a greenhouse gas emission perspective, our results suggest that human activities may have a limited impact on the net C exchanges between inland waters and the atmosphere, as most CO2 fixed by aquatic producers in agro-urban streams is cycled back to the atmosphere after biomineralization. Although seasonal and longitudinal changes in DOM sources must be considered, the implications of our results likely apply more widely as a greater proportion of autochthonous-DOM signature is a common feature in human-impacted catchments. Yet, on a global scale, the influence of human activities remains to be determined given the large diversity of effects of agriculture and urbanization on freshwater DOM depending on the local environmental context.

W. Zhang ◽  
T. Li ◽  
B. Dong

Abstract The three-dimensional fluorescence spectrum has a significant amount of information than the single-stage scanning fluorescence spectrum. At the same time, the parallel factor (PARAFAC) analysis and neural network method can help explore the fluorescence characteristics further, thus could be used to analyse multiple sets of three-dimensional matrix data. In this study, the PARAFAC analysis and the self-organizing mapping (SOM) neural network method are firstly introduced comprehensively. They are then adopted to extract information of the three-dimensional fluorescence spectrum data set for fluorescence characteristics analysis of dissolved organic matter (DOM) in Taihu Lake water. Forty water samples with DOM species were taken from different seasons with the fluorescence information obtained through the three-dimensional fluorescence spectrum analysis, PARAFAC analysis and SOM analysis. The PARAFAC analysis results indicated that the main fluorescence components of dissolved organic matter in Taihu Lake water were aromatic proteins, fulvic acids, and dissolved microorganisms. While the SOM analysis results exhibited that the fluorescence characteristics of the dissolved organics in Taihu Lake varied seasonally. Therefore, the combined method of the three-dimensional fluorescence spectrum analysis, PARAFAC and SOM analysis can provide important information for the characterization of the fluorescence properties of dissolved organic matter in surface water bodies.

Sign in / Sign up

Export Citation Format

Share Document