Characterization and molecular mapping of stripe rust resistance in wheat – Psathyrostachys huashanica introgression line H9015-17-1-9-6

2018 ◽  
Vol 41 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Cai Sun ◽  
Yi Ke Liu ◽  
Kai Xiang Chao ◽  
Zheng Wu Fang ◽  
Shu Ping Wang ◽  
...  
2020 ◽  
Vol 168 (11-12) ◽  
pp. 652-658
Author(s):  
Dong‐fang Ma ◽  
Liling Jiang ◽  
Cai Sun ◽  
Han Li ◽  
Lu Hou ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1717-1724 ◽  
Author(s):  
Liyuan Hou ◽  
Juqing Jia ◽  
Xiaojun Zhang ◽  
Xin Li ◽  
Zujun Yang ◽  
...  

Wheat is one of the major food crops in the world. Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an economically important disease that affects wheat worldwide. The discovery of novel resistance genes and the deployment of effectively resistant cultivars are important for the ongoing control of wheat stripe rust and the maintenance of the agricultural productivity of wheat. CH7086, a new stripe rust-resistant wheat introgression line, was selected by crossing susceptible cultivars with the resistant Thinopyrum ponticum-derived partial amphiploid Xiaoyan 7430. The resistance of CH7086 is effective against all current Chinese P. striiformis f. sp. tritici races. CH7086 was crossed with the stripe rust-susceptible cultivars to develop F1, F2, F3, and BC1 populations for genetic analysis. Segregation in the F2 and BC1 populations and F2:3 lines were tested for resistance against the P. striiformis f. sp. tritici race CYR32. This test showed that CH7086 carries a single dominant gene for stripe rust resistance, which was temporarily designated YrCH86. The closest of the eight simple sequence repeat (SSR) and expressed sequence tag-SSR markers flanking the locus were X2AS33, which is 1.9 cM distal, and Xmag3807, which is 3.1 cM proximal. The resistance gene and its polymorphic markers were placed in deletion bin 2AS-0.78-1.00 using the ‘Chinese Spring’ nullisomic-tetrasomic, ditelosomic, and deletion lines. The tests of both allelism and resistance specificity suggested that the resistance gene found in CH7086 was not Yr17, which was the only current formally named Yr gene on chromosome 2AS. Thus, YrCH86 appeared to be a new locus and was permanently designated Yr69.


Sign in / Sign up

Export Citation Format

Share Document