Stripe Rust Resistance Gene
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 40)

H-INDEX

19
(FIVE YEARS 9)

Plant Disease ◽  
2021 ◽  
Author(s):  
Cai Sun ◽  
Yike Liu ◽  
Qiang Li ◽  
Baotong Wang ◽  
Shuhui Chen ◽  
...  

Wheat stripe rust, an airborne fungal disease and caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is one of the most devastating diseases on wheat. It is the most effective and economical measure for the diseases control to identify high-level resistance genes and apply in wheat breeding. Chinese wheat cultivar Xike01015 presents high levels of all stage resistance (ASR) to the current predominant Pst race CYR33. In this study, a single dominant gene, designated as YrXk, was identified in Xike01015 conferring resistance to CYR33 with genetic analysis of F2 and BC1 population from cross of Mingxian169 (susceptible) and Xike01015. The specific length amplified fragment sequencing (SLAF-seq) strategy was used to construct linkage map in the F2 population. QTL analysis mapped YrXk to a 12.4 Mb segment on chromosome1BS, explaining over 86.96% phenotypic variance. Gene annotation in the QTL region identified three differential expressed candidate genes , TraesCS1B02G168600.1, TraesCS1B02G170200.1, and TraesCS1B02G172400.1. The qRT-PCR results displayed that TraesCS1B02G170200.1 and TraesCS1B02G168600.1 significantly up-regulated and down-regulated, respectively, and TraesCS1B02G170200.1 slightly up-regulated after changed with CYR33 in the seedling stage, which indicating these genes may function in wheat resistance to stripe rust. The results of this study can be used in wheat breeding for improving resistance to stripe rust.


2021 ◽  
Author(s):  
Yahui Li ◽  
Ruiming Lin ◽  
Jinghuang Hu ◽  
Xiaohan Shi ◽  
Dan Qiu ◽  
...  

Euphytica ◽  
2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Maryam Tariq ◽  
Javed Iqbal Mirza ◽  
Shaukat Hussain ◽  
Naeela Qureshi ◽  
Kerrie Forrest ◽  
...  

Author(s):  
Shisheng Chen ◽  
Joshua Hegarty ◽  
Tao Shen ◽  
Lei Hua ◽  
Hongna Li ◽  
...  

AbstractKey messageThe stripe rust resistance geneYr34 was transferred to polyploid wheat chromosome 5AL from T. monococcumand has been used for over two centuries.Wheat stripe (or yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is currently among the most damaging fungal diseases of wheat worldwide. In this study, we report that the stripe rust resistance gene Yr34 (synonym Yr48) is located within a distal segment of the cultivated Triticum monococcum subsp. monococcum chromosome 5AmL translocated to chromosome 5AL in polyploid wheat. The diploid wheat species Triticum monococcum (genome AmAm) is closely related to T. urartu (donor of the A genome to polyploid wheat) and has good levels of resistance against the stripe rust pathogen. When present in hexaploid wheat, the T. monococcum Yr34 resistance gene confers a moderate level of resistance against virulent Pst races present in California and the virulent Chinese race CYR34. In a survey of 1,442 common wheat genotypes, we identified 5AmL translocations of fourteen different lengths in 17.5% of the accessions, with higher frequencies in Europe than in other continents. The old European wheat variety “Mediterranean” was identified as a putative source of this translocation, suggesting that Yr34 has been used for over 200 years. Finally, we designed diagnostic CAPS and sequenced-based markers that will be useful to accelerate the deployment of Yr34 in wheat breeding programs to improve resistance to this devastating pathogen.


2020 ◽  
Vol 168 (11-12) ◽  
pp. 652-658
Author(s):  
Dong‐fang Ma ◽  
Liling Jiang ◽  
Cai Sun ◽  
Han Li ◽  
Lu Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document