puccinia striiformis
Recently Published Documents


TOTAL DOCUMENTS

751
(FIVE YEARS 243)

H-INDEX

46
(FIVE YEARS 7)

2022 ◽  
Vol 7 (1) ◽  
pp. 21-25
Author(s):  
José Calderón Castillo ◽  
Juan Mandujano Mieses

La formación de nuevas variedades de cereales menores requiere de semilla genética nueva o mejorada, por lo que se trazaron los objetivos de introducir y adaptar líneas de trigo harinero, trigo duro y triticale y seleccionar los mejores genotipos a la E.E.A. “El Mantaro”. Se introdujeron del CIMMYT – MEXICO líneas de trigo harinero 2 planteles: 27º ESWYT, 14º SAWYT, trigo duro 1plantel: 38º IDYN, y triticale 1plantel: 38º ITYN, cada plantel consta de 50 líneas. Se instalaron las líneas en parcelas de observación en el lote 6B de la E.E.A. “El Mantaro”, campaña 2007 – 2008, se seleccionaron las cinco mejores líneas de cada plantel en base al rendimiento (k/ha) en grano. El plantel de trigo harinero 27º ESWYT muestra un rendimiento máximo de 4167 kg/ha. El plantel de trigo harinero 14º SAWYT de 6458 kg/ha, el plantel de triticale 38º IDYN de 6042 kg/ha, el plantel de triticale 38º ITYN de 4167 kg/ ha. La mejor respuesta a roya amarilla (Puccinia striiformis West) lo muestran los planteles 14º SAWYT (trigo harinero), y 38º IDYN (trigo duro). Las líneas seleccionadas de cada plantel serán multiplicadas y empleadas en fitomejoramiento.


Plant Disease ◽  
2022 ◽  
Author(s):  
Gensheng Zhang ◽  
Wei Liu ◽  
Xiangrui Cheng ◽  
Lin Wang ◽  
Xiaxia Tian ◽  
...  

In 2017, a new race (TSA-6) of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici, virulent to resistance gene Yr5 were detected in China. However, whether Chinese wheat cultivars are resistant to the new races was unknown. In this study, two isolates (TSA-6 and TSA-9) with virulence to Yr5 were tested on other wheat Yr gene lines for their avirulence/virulence patterns and used, together with prevalent races CYR32 and CYR34 without the Yr5 virulence, to evaluate 165 major Chinese wheat cultivars for their reactions. Isolates TSA-6 and TSA-9 had similar but different virulence spectra, and therefore should be considered as two different races. Their avirulent/virulence patterns were remarkably different from that of CYR34 but quite similar to that of CYR32. Of the 165 wheat cultivars, 21 had all-stage resistance to TSA-6, 34 to TSA-9, and 20 to both races. Adult-plant resistance (APR) was detected in 35 cultivars to TSA-6 and 27 to TSA-9, but only 3 cultivars showed APR to both new races. Slow rusting resistance was observed in 24 cultivars to TSA-6 and of 33 to TSA-9. Analysis of variance (ANOVA) of disease index indicated a significant difference among cultivars, but not among the four races. Based on the molecular marker data, a low percentage of wheat cultivars carried Yr5, Yr7, Yr10, Yr15, Yr26, and/or YrSP. As TSA-6 and TSA-9 can be a serious threat to wheat production in China, monitoring TSA-6, TSA-9, and other races are continually needed.


2022 ◽  
Vol 23 (1) ◽  
pp. 564
Author(s):  
Yang Xu ◽  
Shenghao Zou ◽  
Hao Zeng ◽  
Wei Wang ◽  
Bin Wang ◽  
...  

Stripe rust is one of the most devastating diseases in wheat. Nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs) recognize pathogenic effectors and trigger plant immunity. We previously identified a unique NLR protein YrU1 in the diploid wheat Triticum urartu, which contains an N-terminal ANK domain and a C-terminal WRKY domain and confers disease resistance to stripe rust fungus Puccinia striiformis f. sp. Tritici (Pst). However, how YrU1 functions in disease resistance is not clear. In this study, through the RNA-seq analysis, we found that the expression of a NAC member TuNAC69 was significantly up-regulated after inoculation with Pst in the presence of YrU1. TuNAC69 was mainly localized in the nucleus and showed transcriptional activation in yeast. Knockdown TuNAC69 in diploid wheat Triticum urartu PI428309 that contains YrU1 by virus-induced gene silencing reduced the resistance to stripe rust. In addition, overexpression of TuNAC69 in Arabidopsis enhanced the resistance to powdery mildew Golovinomyces cichoracearum. In summary, our study indicates that TuNAC69 participates in the immune response mediated by NLR protein YrU1, and likely plays an important role in disease resistance to other pathogens.


2022 ◽  
Author(s):  
Tianheng Ren ◽  
Qing Jiang ◽  
Zixin Sun ◽  
Zhenglong Ren ◽  
Feiquan Tan ◽  
...  

Wheat-rye 1RS•1BL translocations from Petkus rye have contributed substantially to wheat production worldwide with their great disease resistance and yield traits. However, the resistance genes on the 1RS chromosomes have completely lost their resistance to newly emerged pathogens. Rye could widen the variation of 1RS as a naturally cross-pollinated related species of wheat. In this study, we developed three new 1RS•1BL translocation lines by crossing rye inbred line BL1, selected from Chinese landrace rye Baili, with wheat cultivar Mianyang11. These three new translocation lines exhibited high resistance to the most virulent and frequently occurring stripe rust pathotypes and showed high resistance in the field where stripe rust outbreaks have been most severe in China. One new gene for stripe rust resistance, located on 1RS of the new translocation lines, is tentatively named YrRt1054. YrRt1054 confers resistance to Puccinia striiformis f. sp. tritici pathotypes that are virulent toward Yr9 and YrCn17. This new resistance gene, YrRt1054, is available for wheat improvement programs. The present study indicated that rye cultivars may carry additional untapped variation as potential sources of resistance.


2022 ◽  
Vol 11 (1) ◽  
pp. 29-43
Author(s):  
Sidra Sabir ◽  
Muhammad Arshad ◽  
Noshin Ilyas ◽  
Farah Naz ◽  
Muhammad Shoaib Amjad ◽  
...  

Abstract Green-synthesized nanoparticles have a tremendous antimicrobial potential to be used as an alternative to hazardous fungicides. In this study, the green synthesis of silver nanoparticles (AgNPs) was performed by using Moringa oleifera leaf extract as a reducing and stabilizing agent. The synthesized AgNPs were subjected to different characterization techniques. UV-visible spectroscopy confirmed the surface plasmon resonance band in the range of 400–450 nm, and zeta analysis revealed that the synthesized AgNPs ranged 4–30 nm in size. Scanning electron microscopy depicted tiny fused rectangular segments and the crystalline nature of the synthesized AgNPs was confirmed using X-ray diffraction. Energy dispersive X-ray (EDX) detector confirmed the presence of metallic silver ions. Fourier-transform infrared analysis revealed the presence of phenols as main reducing agents in the plant extract. Foliar application of different concentrations (25, 50, 75, and 100  ppm) of AgNPs was applied on wheat plants inoculated with Puccinia striiformis to assess the disease incidence against stripe rust disease. AgNPs at a conc. of 75 ppm were found to be more effective against wheat stripe rust disease. Furthermore, the application of AgNPs enhanced morpho-physiological attributes and reduced nonenzymatic compounds and antioxidant enzymes in wheat. The present study highlights the potential role of the green-synthesized AgNPs as a biological control of yellow rust disease.


2021 ◽  
Vol 2 (2) ◽  
pp. 97-106
Author(s):  
Hasan Riaz ◽  
Zulqurnain Khan ◽  
Syed Shahid Hussain Shah ◽  
Muhammad Yasir Khurshid ◽  
Muhammad Asif Ali

Wheat is the second largest consumed cereal by humans after Rice and its high yield and production is very critical for ever increasing global population. The wheat crop is grown all over Pakistan and threatened by several limiting factors. Stripe rust, caused by Puccinia striiformis, is the most destructive wheat pathogen and can reduce yield up to 70% in Pakistan. The present study aimed at exploring the role of Zabardast urea, a bacterial coated urea with zinc,  in inducing resistance against wheat stripe rust. The study involved the collection and maintenance of stripe rust inoculum on Morroco cultivar which later used to inoculate seedlings of Akbar-2019 and Galaxy-2019 resistant and susceptible varieties with three different fertilizer levels viz. specialty fertilizer zabardast urea, plain urea with zinc and plain urea. The results demonstrated the positive role of bacterial coated urea with zinc and reduced the disease severity by 10% and 5% in susceptible and resistant cultivars, respectively, leaving resistant variety asymptomatic. The plain urea with zinc also decreased disease severity in susceptible variety Galaxy-2013 by 6% in comparison with plain urea treatment underlying the role of zinc in combating stripe rust. The study underlines the importance of specialty fertilizers in inducing resistance against stripe rust in wheat and needs further experimentation exploring the mechanisms involved in disease resistance under field conditions.   


Plant Disease ◽  
2021 ◽  
Author(s):  
Gangming Zhan ◽  
Fan Ji ◽  
Jun Zhao ◽  
Yue Liu ◽  
Aihong Zhou ◽  
...  

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat that seriously threatens production safety in wheat-producing areas worldwide. In China, the disease has been largely controlled with fungicide triadimefon. Although high levels of fungicide resistance in other fungal pathogens have been reported, failure to control Pst with any fungicides has seldomly been reported and fungicide sensitivity of Pst has not been evaluated in China. The distribution of triadimefon-resistant Pst isolates was investigated in the present study. The baseline sensitivity of 446 Pst isolates across the country to triadimefon was determined, and the concentration for 50% of maximal effect (EC50) showed a unimodal distribution curve, with a mean value of 0.19 μg mL-1. The results indicated a wide range of sensitivity to triadimefon, with more insensitive isolates collected from Pst winter-increasing areas and northwest over-summering areas, whereas more sensitive isolates were collected from southwest over-summering areas and epidemic areas of Xinjiang and Tibet. The majority of the tested Pst isolates were sensitive to triadimefon; only 6.79% had developed varying degrees of resistance. Characterization of parasitic fitness revealed that the triadimefon-resistant isolates exhibited strong adaptive traits in urediniospore germination rate, latent period, sporulation intensity, and lesion expansion rate. Positive cross-resistance was observed between triadimefon and tebuconazole or hexaconazole, but not between pyraclostrobin or flubeneteram. The point mutation Y134F in the 14α-demethylase enzyme (CYP51) was detected in triadimefon-resistant isolates. A molecular method (Kompetitive Allele Specific PCR) was established for the rapid detection of Y134F mutants in the Pst population. Two genotypes with one point mutation Y134F conferred resistance to triadimefon in Pst. The risk of resistance to triadimefon in Pst may be low to moderate. This study provided important data for establishment of high throughput molecular detection methods, fungicide resistance risk management, and the development of new target fungicides.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Rollar ◽  
Manuel Geyer ◽  
Lorenz Hartl ◽  
Volker Mohler ◽  
Frank Ordon ◽  
...  

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.


2021 ◽  
Author(s):  
Samuel Holden ◽  
Molly Bergum ◽  
Phon Green ◽  
Jan Bettgenhaeuser ◽  
Inmaculada Hernández-Pinzón ◽  
...  

In the evolution of land plants, the plant immune system has experienced expansion in immune receptor and signaling pathways. Lineage-specific expansions have been observed in diverse gene families that are potentially involved in immunity, but lack causal association. Here, we show that Rps8-mediated resistance in barley to the fungal pathogen Puccinia striiformis f. sp. tritici (wheat stripe rust) is conferred by a genetic module: LRR-RK and Exo70FX12, which are together necessary and sufficient. The Rps8 LRR-RK is the ortholog of rice extracellular immune receptor Xa21 and Exo70FX12 is a member of the Poales-specific Exo70FX clade. The Exo70FX clade emerged after the divergence of the Bromeliaceae and Poaceae, and comprises from 2 to 75 members in sequenced grasses. These results demonstrate the requirement of a lineage-specific Exo70FX12 in Rps8 LRR-RK immunity and suggest that the Exo70FX clade may have evolved a specialized role in receptor kinase signaling.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2585
Author(s):  
Amira M. I. Mourad ◽  
Mohamed A. Abou-Zeid ◽  
Shamseldeen Eltaher ◽  
P. Stephen Baenziger ◽  
Andreas Börner

Wheat stripe rust (caused by Puccinia striiformis f. sp. tritici) is a major disease that damages wheat plants and affects wheat yield all over the world. In recent years, stripe rust became a major problem that affects wheat yield in Egypt. New races appeared and caused breakdowns in the resistant genotypes. To improve resistance in the Egyptian genotypes, new sources of resistance are urgently needed. In the recent research, a set of 95 wheat genotypes collected from 19 countries, including Egypt, were evaluated for their resistance against the Egyptian race(s) of stripe rust under field conditions in the two growing seasons 2018/2019 and 2019/2020. A high genetic variation was found among the tested genotypes. Single marker analysis was conducted using a subset of 71 genotypes and 424 diversity array technology (DArT) markers, well distributed across the genome. Out of the tested markers, 13 stable markers were identified that were significantly associated with resistance in both years (p-value ≤ 0.05). By using the sequence of the DArT markers, the chromosomal position of the significant DArT markers was detected, and nearby gene models were identified. Two markers on chromosomes 5A and 5B were found to be located within gene models functionally annotated with disease resistance in plants. These two markers could be used in marker-assisted selection for stripe rust resistance under Egyptian conditions. Two German genotypes were carrying the targeted allele of all the significant DArT markers associated with stripe rust resistance and could be used to improve resistance under Egyptian conditions.


Sign in / Sign up

Export Citation Format

Share Document