introgression line
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 71)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Sun Ha Kim ◽  
Shi-Dong Ji ◽  
Hyun-Sook Lee ◽  
Yun-A Jeon ◽  
Kyu-Chan Shim ◽  
...  

A novel hybrid weakness gene, DTE9, associated with a dark tip embryo (DTE) trait, was observed in CR6078, an introgression line derived from a cross between the Oryza sativa spp. japonica “Hwayeong” (HY) and the wild relative Oryza rufipogon. CR6078 seeds exhibit protruding embryos and flowers have altered inner floral organs. DTE9 was also associated with several hybrid weakness symptoms including decreased grain weight. Map-based cloning and transgenic approaches revealed that DTE9 is an allele of OsMADS8, a MADS-domain transcription factor. Genetic analysis indicated that two recessive complementary genes were responsible for the expression of the DTE trait. No sequence differences were observed between the two parental lines in the OsMADS8 coding region; however, numerous single nucleotide polymorphisms were detected in the promoter and intronic regions. We generated overexpression (OX) and RNA interference (RNAi) transgenic lines of OsMADS8 in HY and CR6078, respectively. The OsMADS8-OX lines showed the dark tip embryo phenotype, whereas OsMADS8-RNAi recovered the normal embryo phenotype. Changes in gene expression, including of ABCDE floral homeotic genes, were observed in the OsMADS8-OX and OsMADS8-RNAi lines. Overexpression of OsMADS8 led to decreased expression of OsEMF2b and ABA signaling-related genes including OsVP1/ABI3. HY seeds showed higher ABA content than CR6078 seeds, consistent with OsMADS8/DTE9 regulating the expression of genes related ABA catabolism in CR6078. Our results suggest that OsMADS8 is critical for floral organ determination and seed germination and that these effects are the result of regulation of the expression of OsEMF2b and its role in ABA signaling and catabolism.


2021 ◽  
Author(s):  
Elohim Bello Bello ◽  
Thelma Y. Rico Cambron ◽  
Ruben Rellan Alvarez ◽  
Luis Rafael Herrera-Estrella

Soil mechanical impedance precludes root penetration, confining root system development to shallow soil horizons where mobile nutrients are scarce. Using a two-phase-agar system, we characterized Arabidopsis thaliana responses to low and high mechanical impedance at three root penetration stages. We found that seedlings whose roots fail to penetrate agar barriers show drastic changes in shoot and root morphology, while those capable of penetrating have only minor morphological effects. The assessment of 21 Arabidopsis accessions revealed that primary root penetrability (PRP) varies widely among accessions. To search for quantitative trait loci (QTLs) associated to root system penetrability, we evaluated a recombinant inbred population (RIL) derived from Landsberg erecta (Ler-0, with a high PRP) and Shahdara (Sha, with a low PRP) accessions. QTL analysis revealed a major-effect QTL localized in chromosome 3 (q-RPI3), which accounted for 29.98% (LOD = 8.82) of the total phenotypic variation. Employing an introgression line (IL-321), with a homozygous q-RPI3 region from Sha in the Ler-0 genetic background, we demonstrated that q-RPI3 plays a crucial role in root penetrability. This multiscale study revels new insights into root plasticity during the penetration process in hard agar layers, natural variation and genetic architecture behind primary root penetrability in Arabidopsis.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yue Feng ◽  
Xiaoping Yuan ◽  
Yiping Wang ◽  
Yaolong Yang ◽  
Mengchen Zhang ◽  
...  

2021 ◽  
Vol 20 (12) ◽  
pp. 3101-3113
Author(s):  
Sheng-sheng BAI ◽  
Han-bing ZHANG ◽  
Jing HAN ◽  
Jian-hui WU ◽  
Jia-chuang LI ◽  
...  

Stresses ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 238-252
Author(s):  
Kalliopi Kadoglidou ◽  
Aliki Xanthopoulou ◽  
Apostolos Kalyvas ◽  
Ifigeneia Mellidou

Salt stress is considered as one of the most frequent factors limiting plant growth and productivity of crops worldwide. The aim of the study was to evaluate physiological and biochemical responses of nine diverse tomato genotypes exposed to salt stress. In this regard, four-week-old seedlings of one modern variety, five landraces, the salt-sensitive accession of ‘Ailsa Craig’, the salt-tolerant wild accession of S. pimpinellifolium ‘LA1579’, as well as the vitamin C-rich S. pennellii introgression line ‘IL12-4’, were exposed to moderate salt stress (200 mM NaCl) for 10 days. At the end of the stress treatment, agronomical traits and stress indices were evaluated, while gas exchange-related parameters, root electrolyte leakage, malondialdehyde content and ascorbic acid were also determined. All parameters were significantly affected by salt stress, but to a different extent, verifying the diverse degree of tolerance within the selected genotypes, and further highlighting the different stress-induced mechanisms. The landrace originated from ‘Santorini’ island, as well as the modern variety, which originated from traditional cultivars, demonstrated a better performance and adaptivity under moderate salt stress, accompanied by reduced lipid peroxidation and enhanced ascorbic acid content, indicating that they could be potential promising genetic material for breeding programs or as grafting rootstocks/scions.


2021 ◽  
Vol 287 ◽  
pp. 110266
Author(s):  
Toshihiro Watanabe ◽  
Ryota Tomizaki ◽  
Ryotaro Watanabe ◽  
Hayato Maruyama ◽  
Takuro Shinano ◽  
...  

Euphytica ◽  
2021 ◽  
Vol 217 (9) ◽  
Author(s):  
Xin Wang ◽  
Changjian Liao ◽  
Xiaojun Wang ◽  
Ruichun Yang ◽  
Lihong Zhai ◽  
...  

2021 ◽  
Author(s):  
Harel Bacher ◽  
Yoav Sharaby ◽  
Harkamal Walia ◽  
Zvi Peleg

The intensity of water stress experienced by plants depends upon soil moisture status as well as atmospheric variables such as temperature, radiation, and air vapour pressure deficit (VPD). Although the role of shoot architecture with these edaphic and atmospheric factors is well-studied, the extent to shoot and root dynamic interactions as a continuum are controlled by genotypic variation is less known. Here, we targeted these interactions using a wild emmer introgression line (IL20) with a distinct drought-induced shift in the shoot-to-root ratio and its drought-sensitive recurrent parent Svevo. Using a gravimetric platform, we show that IL20 maintained higher root water influx and gas exchange under terminal drought, which supported a greater growth. Interestingly, the advantage of IL20 in root influx and transpiration was expressed earlier during the daily diurnal cycle under lower VPD and therefore supported higher transpiration efficiency. Application of structural equation model indicates that under water-stress, VPD and radiation are antagonistic to transpiration rate, whereas the root water influx operates as feedback for the higher atmospheric responsiveness of leaves. Collectively, these results suggest that a drought-induced shift in root-to-shoot ratio can improve plant water uptake potential in a short preferable time window determined by both water and atmospheric parameters.


Sign in / Sign up

Export Citation Format

Share Document