Stochastic Models for the Amount of Overflow in a Finite Dam with Random Inputs, Random Outputs, and Exponential Release Policy

2011 ◽  
Vol 29 (3) ◽  
pp. 473-485 ◽  
Author(s):  
P. R. Vittal ◽  
V. Thangaraj ◽  
V. Muralidhar
1955 ◽  
Vol 39 (6) ◽  
pp. 464-464
Author(s):  
John E. Anderson
Keyword(s):  

2020 ◽  
Vol 10 (10) ◽  
pp. 52-58
Author(s):  
Sergey M. AFONIN ◽  

An electroelastic actuator for nanomechatronics is used in nanotechnology, adaptive optics, microsurgery, microelectronics, and biomedicine to actuate or control mechanisms, systems based on the electroelastic effect, and to convert electrical signals into mechanical displacements and forces. In nanomechatronic systems, a piezoactuator is used in scanning microscopy, laser systems, in astronomy for precision alignment, for compensation of temperature, gravitational deformations and atmospheric turbulence, focusing, and stabilizing the image. In this study, a condition for absolute stability of an electroelastic actuator control system for nanomechatronics under deterministic and random inputs is obtained. A number of equilibrium positions in an electroelastic actuator mechatronic control system are found, the totality of which is represented by a straight line segment. The electroelastic actuator’s deformation control system dead band relative width is determined for the actuator’s symmetric and asymmetric hysteresis characteristics. Under deterministic inputs and with fulfilling the condition for the derivative of the nonlinear hysteresis actuator deformation characteristic, the set of equilibrium positions of the electroelastic actuator control system for nanomechatronics is absolutely stable. Under random inputs, the system absolute stability with respect to the mathematical expectations of the electroelastic actuator mechatronic control system equilibrium positions has been determined subject to fulfilling the condition on the derivative of the actuator hysteresis characteristic.


Sign in / Sign up

Export Citation Format

Share Document