An in silico molecular modeling approach of halolactone derivatives as potential inhibitors for human immunodeficiency virus type-1 reverse transcriptase enzyme

Author(s):  
Ana Paula Lima da Costa ◽  
Fábio José Bonfim Cardoso ◽  
Fábio Alberto de Molfetta
2021 ◽  
Vol 72 (3) ◽  
pp. 159-178
Author(s):  
Sarkar Mohammad Abe Kawsar ◽  
Mohammed Anowar Hosen ◽  
Tasneem Sultana Chowdhury ◽  
Kazi Masud Rana ◽  
Yuki Fujii ◽  
...  

In recent, millions of people are living with the human immunodeficiency virus type 1 (HIV-1), which causes acquired immunodeficiency syndrome. HIV-1 reverse transcriptase (RT) is one of the main viral targets for HIV-1 inhibition. Pyrimidine nucleoside derivative, 3′-azido-3′-deoxythymidine (AZT) is a highly active nucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). In this work, hydroxyl (-OH) groups of cytidine structure were modified with different aliphatic and aromatic groups to get 5´-O-acyl- and 2´,3´-di-O-acyl derivatives and then employed for molecular modeling, molecular docking, biological prediction, and pharmacological studies. Herein, we relate the optimization of cytidine and its acylated analogues applying density functional theory (DFT) with B3LYP/3-21G level theory to explore their thermochemical and molecular electrostatic potential (MEP) properties. Prediction of activity spectra for substances (PASS) indicated promising antiviral, anti-carcinogenic, and antifungal functionality of these cytidine esters compared to the antibacterial activities. To support this observation, their cytotoxic prediction and molecular docking studies have been performed against HIV-1 reverse transcriptase (RT) (PDB: 3V4I). Most of the molecules studied out here could bind near the crucial catalytic binding site, Tyr181, Ile94, Ile382, Lys374, Val381, Val90, and Tyr34 of the HIV-1 reverse transcriptase (RT), and the molecules were surrounded by other active site residues like Gln332, Trp406, Asn265, Gly93, His96, Pro95, and Thr165. Finally, these novel molecules were analyzed for their pharmacokinetic properties which expressed that the combination of in silico ADMET prediction, toxicity prediction, and drug-likeness had shown a promising result. The study discusses the performance of molecular docking to suggest the novel molecules active against resistance mutants of RT and/or recombinant strains of HIV-1.


1999 ◽  
Vol 290 (3) ◽  
pp. 615-625 ◽  
Author(s):  
Mónica Gutiérrez-Rivas ◽  
Ángela Ibáñez ◽  
Miguel A Martı́nez ◽  
Esteban Domingo ◽  
Luis Menéndez-Arias

2006 ◽  
Vol 50 (8) ◽  
pp. 2772-2781 ◽  
Author(s):  
Zhijun Zhang ◽  
Michelle Walker ◽  
Wen Xu ◽  
Jae Hoon Shim ◽  
Jean-Luc Girardet ◽  
...  

ABSTRACT Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.


Sign in / Sign up

Export Citation Format

Share Document