reverse transcriptase enzyme
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 15 (1) ◽  
pp. 82
Author(s):  
Giulia Culletta ◽  
Mario Allegra ◽  
Anna Maria Almerico ◽  
Ignazio Restivo ◽  
Marco Tutone

Telomerase, a reverse transcriptase enzyme involved in DNA synthesis, has a tangible role in tumor progression. Several studies have evidenced telomerase as a promising target for developing cancer therapeutics. The main reason is due to the overexpression of telomerase in cancer cells (85–90%) compared with normal cells where it is almost unexpressed. In this paper, we used a structure-based approach to design potential inhibitors of the telomerase active site. The MYSHAPE (Molecular dYnamics SHared PharmacophorE) approach and docking were used to screen an in-house library of 126 arylsulfonamide derivatives. Promising compounds were synthesized using classical and green methods. Compound 2C revealed an interesting IC50 (33 ± 4 µM) against the K-562 cell line compared with the known telomerase inhibitor BIBR1532 IC50 (208 ± 11 µM) with an SI ~10 compared to the BALB/3-T3 cell line. A 100 ns MD simulation of 2C in the telomerase active site evidenced Phe494 as the key residue as well as in BIBR1532. Each moiety of compound 2C was involved in key interactions with some residues of the active site: Arg557, Ile550, and Gly553. Compound 2C, as an arylsulfonamide derivative, is an interesting hit compound that deserves further investigation in terms of optimization of its structure to obtain more active telomerase inhibitors


2021 ◽  
Vol 14 (10) ◽  
pp. 1009
Author(s):  
Winnie Rotich ◽  
Nicholas J. Sadgrove ◽  
Eduard Mas-Claret ◽  
Guillermo F. Padilla-González ◽  
Anastasia Guantai ◽  
...  

CareVid is a multi-herbal product used in southwest Kenya as an immune booster and health tonic and has been anecdotally described as improving the condition of HIV-positive patients. The product is made up of roots, barks and whole plant of 14 African medicinal plants: Acacia nilotica (L.) Willd. ex Delile (currently, Vachelia nilotica (L.) P.J.H Hurter & Mabb.), Adenia gummifera (Harv.) Harms, Anthocleista grandiflora Gilg, Asparagus africanus Lam., Bersama abyssinica Fresen., Clematis hirsuta Guill. & Perr., Croton macrostachyus Hochst. ex Delile, Clutia robusta Pax (accepted as Clutia kilimandscharica Engl.), Dovyalis abyssinica (A. Rich.) Warb, Ekebergia capensis Sparm., Periploca linearifolia Quart.-Dill. & A. Rich., Plantago palmata Hook.f., Prunus africana Hook.f. Kalkman and Rhamnus prinoides L’Her. The objective of this study was to determine the major chemical constituents of CareVid solvent extracts and screen them for in vitro and in silico activity against the HIV-1 reverse transcriptase enzyme. To achieve this, CareVid was separately extracted using CH2Cl2, MeOH, 80% EtOH in H2O, cold H2O, hot H2O and acidified H2O (pH 1.5–3.5). The extracts were analysed using HPLC–MS equipped with UV diode array detection. HIV-1 reverse transcriptase inhibition was performed in vitro and compared to in silico HIV-1 reverse transcriptase inhibition, with the latter carried out using MOE software, placing the docking on the hydrophobic pocket in the subdomain of p66, the NNRTI pocket. The MeOH and 80% EtOH extracts showed strong in vitro HIV-1 reverse transcriptase inhibition, with an EC50 of 7 μg·mL−1. The major components were identified as sucrose, citric acid, ellagic acid, catechin 3-hexoside, epicatechin 3-hexoside, procyanidin B, hesperetin O-rutinoside, pellitorine, mangiferin, isomangiferin, 4-O-coumaroulquinic acid, ellagic acid, ellagic acid O-pentoside, crotepoxide, oleuropein, magnoflorine, tremulacin and an isomer of dammarane tetrol. Ellagic acid and procyanidin B inhibited the HIV-1 reverse transcription process at 15 and 3.2 µg/mL−1, respectively. Docking studies did not agree with in vitro results because the best scoring ligand was crotepoxide (ΔG = −8.55 kcal/mol), followed by magnoflorine (ΔG = −8.39 kcal/mol). This study showed that CareVid has contrasting in vitro and in silico activity against HIV-1 reverse transcriptase. However, the strongest in vitro inhibitors were ellagic acid and procyanidin B.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1890
Author(s):  
Maria M. Plummer ◽  
Charles S. Pavia

Nearly 40 years have passed since the initial cases of infection with the human mmunodeficiency virus (HIV) were identified as a new disease entity and the cause of acquired immunodeficiency disease (AIDS). This virus, unlike any other, is capable of causing severe suppression of our adaptive immune defense mechanisms by directly infecting and destroying helper T cells leading to increased susceptibility to a wide variety of microbial pathogens, especially those considered to be intracellular or opportunistic. After T cells are infected, HIV reproduces itself via a somewhat unique mechanism involving various metabolic steps, which includes the use of a reverse transcriptase enzyme that enables the viral RNA to produce copies of its complementary DNA. Subsequent physiologic steps lead to the production of new virus progeny and the eventual death of the invaded T cell. Fortunately, both serologic and molecular tests (such as PCR) can be used to confirm the diagnosis of an HIV infection. In the wake of the current COVID-19 pandemic, it appears that people living with HIV/AIDS are equally or slightly more susceptible to the etiologic agent, SARS-CoV-2, than the general population having intact immune systems, but they may have more serious outcomes. Limited clinical trials have also shown that the currently available COVID-19 vaccines are both safe and effective in affording protection to HIV/AIDS patients. In this review, we further explore the unique dynamic of HIV/AIDS in the context of the worldwide COVID-19 pandemic and the implementation of vaccines as a protective measure against COVID-19, as well as what immune parameters and safeguards should be monitored in this immunocompromised group following vaccination.


2020 ◽  
Author(s):  
Fabien Cholet ◽  
Umer Z. Ijaz ◽  
Cindy J. Smith

SummaryRT-Q-PCR, and RT-PCR amplicon sequencing, provide a convenient, target-specific, high-sensitivity approach for gene expression studies and are widely used in environmental microbiology. Yet, the effectiveness and reproducibility of the reverse transcription step has not been evaluated. Therefore, we tested a combination of four commercial reverse transcriptases with two priming techniques to faithfully transcribe 16S rRNA and amoA transcripts from marine sediments. Both enzyme and priming strategy greatly affected quantification of the exact same target with differences of up to 600-fold. Furthermore, the choice of RT system significantly changed the communities recovered. For 16S rRNA, both enzyme and priming had a significant effect with enzyme having a stronger impact than priming. Inversely, for amoA only the change in priming strategy resulted in significant differences between the same sample. Specifically, more OTUs and better coverage of amoA transcripts diversity were obtained with GS priming indicating this approach was better at recovering the diversity of amoA transcripts. Moreover, sequencing of RNA mock communities revealed that, even though transcript α diversities (i.e. OTU counts within a sample) can be biased by the RT, the comparison of β diversities (i.e. differences in OTU counts between samples) is reliable as those biases are reproducible between environments.Originality-Significance StatementIs the complementary DNA (cDNA) produced after Reverse Transcription (RT) a faithful representation of the starting RNA? This is a fundamental and important question for transcriptomic-based studies in environmental microbiology that aim to quantify and/or examine the diversity of transcripts via RT approaches. Yet little is known about the reliability and reproducibility of this step. Here, we evaluated the effect of the two main components of the RT reaction – the retro transcriptase enzyme and priming strategy (gene specific vs random priming), on the quantification and diversity of cDNA. We found that both have a significant impact. We further provide evidence to enable informed choices as to the enzyme and priming combinations to improve the performance of RT-PCR approaches. Taken together, this work will improve the reliability and reproducibility of transcript-based studies in environmental microbiology.


2020 ◽  
Vol 48 (7) ◽  
pp. 3734-3746 ◽  
Author(s):  
Stephan Werner ◽  
Lukas Schmidt ◽  
Virginie Marchand ◽  
Thomas Kemmer ◽  
Christoph Falschlunger ◽  
...  

Abstract Reverse transcription (RT) of RNA templates containing RNA modifications leads to synthesis of cDNA containing information on the modification in the form of misincorporation, arrest, or nucleotide skipping events. A compilation of such events from multiple cDNAs represents an RT-signature that is typical for a given modification, but, as we show here, depends also on the reverse transcriptase enzyme. A comparison of 13 different enzymes revealed a range of RT-signatures, with individual enzymes exhibiting average arrest rates between 20 and 75%, as well as average misincorporation rates between 30 and 75% in the read-through cDNA. Using RT-signatures from individual enzymes to train a random forest model as a machine learning regimen for prediction of modifications, we found strongly variegated success rates for the prediction of methylated purines, as exemplified with N1-methyladenosine (m1A). Among the 13 enzymes, a correlation was found between read length, misincorporation, and prediction success. Inversely, low average read length was correlated to high arrest rate and lower prediction success. The three most successful polymerases were then applied to the characterization of RT-signatures of other methylated purines. Guanosines featuring methyl groups on the Watson-Crick face were identified with high confidence, but discrimination between m1G and m22G was only partially successful. In summary, the results suggest that, given sufficient coverage and a set of specifically optimized reaction conditions for reverse transcription, all RNA modifications that impede Watson-Crick bonds can be distinguished by their RT-signature.


Sign in / Sign up

Export Citation Format

Share Document