An integrated approach withTrichoderma harzianumDGA01 and hot water treatment on control of crown rot disease and retention of overall quality in banana

2012 ◽  
Vol 22 (9) ◽  
pp. 1021-1033 ◽  
Author(s):  
Dionisio G. Alvindia ◽  
Miriam A. Acda
2013 ◽  
Vol 27 ◽  
pp. 42-47 ◽  
Author(s):  
Md Nurul Amin ◽  
Md Mosharraf Hossain

For reducing the post-harvest loss and extension of shelf-life of banana, it is treated with fungicide or combination of fungicide and hot-water treatment. A study was conducted for developing a method to control post-harvest diseases and extension of shelf-life of banana through non-chemical method of hot water treatment. The best treatment combination was found at 53 °C for 9 minutes. Shelf-lives of BARI Kola 1 and Sabri Kola treated with hot water increased by 26 and 27.5%, respectively against untreated fruits. Post-harvest loss (decay and crown rot) of these varieties was reduced, respectively by 95% and 70% against untreated fruits. Firmness of treated fruits for both varieties was found higher than that of untreated fruits during ripening. Total soluble solid, total sugar, acidity and ?-carotene of treated fruits of these varieties increased over untreated fruits. The pH and vitamin C of treated bananas decreased over untreated fruits during ripening. DOI: http://dx.doi.org/10.3329/jce.v27i1.15857 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 1, June 2012: 42-47


2021 ◽  
Vol 27 ◽  
pp. 102284
Author(s):  
Jakub Pečenka ◽  
Zuzana Bytešníková ◽  
Tomáš Kiss ◽  
Eliška Peňázová ◽  
Miroslav Baránek ◽  
...  

MRS Advances ◽  
2021 ◽  
Author(s):  
Quinshell Smith ◽  
Kenneth Burnett ◽  
Nawzat Saadi ◽  
Khulud Alotaibi ◽  
Atikur Rahman ◽  
...  

Author(s):  
Mohammad Khairul Basher ◽  
S. M. Shah Riyadh ◽  
Md. Khalid Hossain ◽  
Mahmudul Hassan ◽  
Md. Abdur Rafiq Akand ◽  
...  

Zinc-oxide (ZnO) nanostructures including nanorods are currently considered as a pioneer research of interest world-wide due to their excellent application potentials in various applied fields especially for the improvement of energy harvesting photovoltaic solar cells (PSC). We report on the growth and morphological properties of zinc-oxide (ZnO) nanorods grown on the surface of plain zinc (non-etched and chemically etched) plates by using a simple, economical, and environment-friendly technique. We apply hot water treatment (HWT) technique to grow the ZnO nanorods and varies the process parameters, such as temperature and the process time duration. The morphological, and elemental analysis confirm the agglomeration of multiple ZnO nanorods with its proper stoichiometry. The obtained nanostructures for different temperatures with different time duration showed the variation in uniformity, density, thickness and nanonorods size. The ZnO nanorods produced on the etched zinc surface were found thicker and uniform as compared to those grown on the non-etched zinc surface. This chemically etched Zinc plates preparation can be an easy solution to grow ZnO nanorods with high density and uniformity suitable for PSC applications such as to enhance the energy conversion efficiency of the photovoltaic (PV) solar cells towards the future sustainable green earth.


Sign in / Sign up

Export Citation Format

Share Document