Nanostructured antibacterial aluminum foil produced by hot water treatment against E. coli in meat

MRS Advances ◽  
2021 ◽  
Author(s):  
Quinshell Smith ◽  
Kenneth Burnett ◽  
Nawzat Saadi ◽  
Khulud Alotaibi ◽  
Atikur Rahman ◽  
...  
2021 ◽  
Author(s):  
Nawzat Saadi ◽  
Khulud Alotaibi ◽  
Laylan Hassan ◽  
Quinshell Smith ◽  
Fumiya Watanabe ◽  
...  

2010 ◽  
Vol 73 (4) ◽  
pp. 752-757 ◽  
Author(s):  
M. L. BARI ◽  
K. ENOMOTO ◽  
D. NEI ◽  
S. KAWAMOTO

The majority of the seed sprout–related outbreaks have been associated with Escherichia coli O157:H7 and Salmonella. Therefore, an effective method for inactivating these organisms on the seeds before sprouting is needed. The current pasteurization method for mung beans in Japan (hot water treatment at 85°C for 10 s) was more effective for disinfecting inoculated E. coli O157:H7, Salmonella, and nonpathogenic E. coli on mung bean seeds than was the calcium hypochlorite treatment (20,000 ppm for 20 min) recommended by the U.S. Food and Drug Administration. Hot water treatment at 85°C for 40 s followed by dipping in cold water for 30 s and soaking in chlorine water (2,000 ppm) for 2 h reduced the pathogens to undetectable levels, and no viable pathogens were found in a 25-g enrichment culture and during the sprouting process. Practical tests using a working pasteurization machine with nonpathogenic E. coli as a surrogate produced similar results. The harvest yield of the treated seed was within the acceptable range. These treatments could be a viable alternative to the presently recommended 20,000-ppm chlorine treatment for mung bean seeds.


2009 ◽  
Vol 72 (1) ◽  
pp. 151-156 ◽  
Author(s):  
NORASAK KALCHAYANAND ◽  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
DAYNA M. BRICHTA-HARHAY ◽  
MICHAEL N. GUERINI ◽  
...  

1,3-Dibromo-5,5-dimethylhydantoin (DBDMH; 25°C) and hot water (85°C) spray treatments were evaluated for efficacy in decontamination of pathogenic bacteria attached to beef carcass surfaces represented by cutaneous trunci (CT) muscle sections and beef hearts. Treatments were evaluated using two different systems, a commercial carcass wash cabinet and a model carcass washer. The effects were measured immediately after treatment and again after 48 h of storage at 4°C. Sections of CT and beef hearts were inoculated with bovine fecal solution containing approximately 6 log CFU/cm2 of Escherichia coli O157:H7 and Salmonella. After DBDMH or hot water spray treatments, bacterial populations were enumerated immediately and after storage for 48 h at 4°C. DBDMH treatments reduced aerobic plate counts, Enterobacteriaceae, E. coli O157: H7, and Salmonella by the same or slightly lower amounts relative to hot water treatment. DBDMH reduced aerobic plate counts and Enterobacteriaceae by 2.8 to 3.6 log CFU/cm2, E. coli O157:H7 by 1.6 to 2.1 log CFU/cm2, and Salmonella by 0.7 to 2.3 log CFU/cm2 on CT sections and beef hearts. Hot water treatment reduced aerobic plate counts and Enterobacteriaceae by 3.0 to 4.1 log CFU/cm2, E. coli O157:H7 by 1.8 to 2.3 log CFU/cm2, and Salmonella by 2.5 to 2.8 log CFU/cm2. After 48 h of storage, the reductions of organisms by DBDMH and hot water treatments were not different. This study demonstrated that DBDMH spray washing could be effective as an antimicrobial intervention for beef carcasses and variety meats.


2008 ◽  
Vol 71 (4) ◽  
pp. 830-834 ◽  
Author(s):  
M. L. BARI ◽  
Y. INATSU ◽  
S. ISOBE ◽  
S. KAWAMOTO

The majority of the seed sprout–related outbreaks have been associated with Escherichia coli O157:H7 and Salmonella. Therefore, an effective method is needed to inactivate these organisms on the seeds before they are sprouted. This study was conducted to assess the effectiveness of various hot water treatments to inactivate E. coli O157:H7 and Salmonella populations on mung beans seeds intended for sprout production and to determine the effect of these treatments on seed germination after the seeds were dipped in chilled water for 30 s. Mung bean seed inoculated with four-strain cocktails of E. coli O157:H7 and Salmonella were soaked into hot water at 80 and 90°C with shaking for various periods and then dipped in chilled water for 30 s. The treated seeds were then assessed for the efficacy of the treatment for reducing populations of the pathogens and the effects of the treatment on germination. After inoculation and air drying, 6.08 ± 0.34 log CFU/g E. coli O157:H7 and 5.34 ± 0.29 log CFU/g Salmonella were detected on the seeds. After hot water treatment at 90°C for 90 s followed by dipping in chilled water for 30 s, no viable pathogens were found and no survivors were found in the enrichment medium and during the sprouting process. The germination yield of the seed was not affected significantly. Therefore, hot water treatment followed by dipping in chilled water for 30 s could be an effective seed decontamination method for mung bean seeds intended for sprout production.


2021 ◽  
Vol 27 ◽  
pp. 102284
Author(s):  
Jakub Pečenka ◽  
Zuzana Bytešníková ◽  
Tomáš Kiss ◽  
Eliška Peňázová ◽  
Miroslav Baránek ◽  
...  

Author(s):  
Mohammad Khairul Basher ◽  
S. M. Shah Riyadh ◽  
Md. Khalid Hossain ◽  
Mahmudul Hassan ◽  
Md. Abdur Rafiq Akand ◽  
...  

Zinc-oxide (ZnO) nanostructures including nanorods are currently considered as a pioneer research of interest world-wide due to their excellent application potentials in various applied fields especially for the improvement of energy harvesting photovoltaic solar cells (PSC). We report on the growth and morphological properties of zinc-oxide (ZnO) nanorods grown on the surface of plain zinc (non-etched and chemically etched) plates by using a simple, economical, and environment-friendly technique. We apply hot water treatment (HWT) technique to grow the ZnO nanorods and varies the process parameters, such as temperature and the process time duration. The morphological, and elemental analysis confirm the agglomeration of multiple ZnO nanorods with its proper stoichiometry. The obtained nanostructures for different temperatures with different time duration showed the variation in uniformity, density, thickness and nanonorods size. The ZnO nanorods produced on the etched zinc surface were found thicker and uniform as compared to those grown on the non-etched zinc surface. This chemically etched Zinc plates preparation can be an easy solution to grow ZnO nanorods with high density and uniformity suitable for PSC applications such as to enhance the energy conversion efficiency of the photovoltaic (PV) solar cells towards the future sustainable green earth.


Sign in / Sign up

Export Citation Format

Share Document