xanthomonas campestris pv campestris
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 95)

H-INDEX

38
(FIVE YEARS 6)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2705
Author(s):  
Lu Lu ◽  
Sokrat G. Monakhos ◽  
Yong Pyo Lim ◽  
So Young Yi

Black rot disease, caused by Xanthomonas campestris pv. campestris (Xcc), results in significant yield losses in Brassica oleracea crops worldwide. To find black rot disease-resistant cabbage lines, we carried out pathogenicity assays using the scissor-clipping method in 94 different B. oleracea lines. By comparing the lesion areas, we selected a relatively resistant line, Black rot Resistance 155 (BR155), and a highly susceptible line, SC31. We compared the two cabbage lines for the Xcc-induced expression pattern of 13 defense-related genes. Among them, the Xcc-induced expression level of PR1 and antioxidant-related genes (SOD, POD, APX, Trx H, and CHI) were more than two times higher in BR155 than SC31. Nitroblue tetrazolium (NBT) and diaminobenzidine tetrahydrochloride (DAB) staining analysis showed that BR155 accumulated less Xcc-induced reactive oxygen species (ROS) than did SC31. In addition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays showed that BR155 had higher antioxidant activity than SC31. This study, focused on the defense responses of cabbage during the early biotrophic stage of infection, indicated that Xcc-induced ROS might play a role in black rot disease development. We suggest that non-enzymatic antioxidants are important, particularly in the early defense mechanisms of cabbage against Xcc.


2021 ◽  
pp. 41-51
Author(s):  
João César da Silva ◽  
Tadeu Antônio Fernandes da Silva Júnior ◽  
José Marcelo Soman ◽  
Luís Fernando Maranho Watanabe ◽  
Renate Krause Sakate ◽  
...  

2021 ◽  
Vol 37 (5) ◽  
pp. 476-488
Author(s):  
Guo Chen ◽  
Congcong Kong ◽  
Limei Yang ◽  
Mu Zhuang ◽  
Yangyong Zhang ◽  
...  

<i>Xanthomonas campestris</i> pv. <i>campestris</i> (<i>Xcc</i>) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 <i>Xcc</i> strains including 39 <i>Xcc</i> isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative <i>Xcc</i> strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for <i>Xcc</i> strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-<i>Xcc</i> interaction studies.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1940
Author(s):  
Jeong-Eui Hong ◽  
Khandker Shazia Afrin ◽  
Md Abdur Rahim ◽  
Hee-Jeong Jung ◽  
Ill-Sup Nou

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), produces V-shaped chlorotic lesions on the leaves of cabbage (Brassica oleracea var. capitata L.), causing darkened veins and drastically reducing yield and quality. Of the 11 Xcc races identified, races 1, 4, and 6 are predominant globally. In the present study, we aimed to develop a molecular marker linked to black rot resistance against Xcc races 6 and 7. Crossed between black rot-resistant (‘SCNU-C-3470’) and -susceptible (‘SCNU-C-3328’) lines obtained 186 F2 plants. Resistance to Xcc race 6 segregated in a 3:1 (susceptible:resistant) ratio in the F2 population, which is consistent with a monogenic recessive trait. Nucleotide-binding site (NBS) leucine rich repeat (LRR)-encoding resistance (R) genes play a crucial role in plant defenses to various pathogens. The candidate R gene (Bol031422) located on chromosome C08, previously reported by our research group, was cloned and sequenced in resistant and susceptible cabbage lines. The R gene Bol031422 consisted of a single exon with a 3 bp insertion/deletions (InDels), a 292 bp polymorphism (an insertion in the exon of the resistant line relative to the susceptible line) and several single nucleotide polymorphisms (SNPs). Here, we developed the InDel marker BR6-InDel to assess linkage between variation at Bol031422 and resistance to Xcc races 6 and 7. This marker will help cabbage breeders develop cabbage cultivars resistant to Xcc races 6 and 7.


Plant Disease ◽  
2021 ◽  
Author(s):  
Andjelka Prokić ◽  
Tamara Marković ◽  
Jelena Menković ◽  
Milan Ivanovic ◽  
Aleksa Obradoviċ

Arugula (Eruca vesicaria subsp. sativa (Miller) Thell., syn. Brassica eruca L.), is an annual cruciferous crop that is increasingly grown for fresh consumption in Serbia. In November 2018, a few detached leaves of cultivated arugula originating from a local producer, showing necrotic lesions, were observed in a fresh vegetable market in Belgrade, Serbia. Information about the disease incidence and severity was not available. Intensity of the observed symptoms was low, but it could be a consequence of the produce quality selection for the market. The leaves developed irregular chlorotic lesions starting from the leaf edge, and tissue within some of them turned dark brown and necrotic (Fig. 1a). From the lesions on different leaves, smooth, bright yellow pigmented, round and opalescent bacterial colonies were isolated on nutrient agar (NA) medium after 72 h of incubation at 26°C. Six bacterial isolates, obtained from three leaf subsamples which induced hypersensitive reaction in tobacco leaves (Nicotiana tabacum L. cv. Samsun), were selected for further studies. On yeast - dextrose – CaCO3 medium, the strains formed characteristic creamy yellow, mucoid, opaque and convex colonies. All isolates were Gram-negative, strictly aerobic, non-fluorescent and catalase positive, did not produce oxidase nor arginine dehydrolase, and did not show pectynolitic activity on potato tuber slices. They hydrolyzed starch, gelatine and esculin, used glucose and sucrose, but not arabinose as a carbon source, and did not reduce nitrates. They grew at 36°C, and tolerated 5% NaCl and 0.02% triphenyl-tetrazolium chloride (Lelliott and Stead, 1987). These growth characteristics were similar as for the reference Xanthomonas campestris pv. campestris (Xcc) strain KFB 105, used in all tests as a positive control (Obradović et al., 2000). The isolates were further characterized by polymerase chain reaction (PCR) using primers DLH120/DLH125, specific for the hrpF gene region of X. campestris according to Berg et al. (2005). Specific DNA fragment of 619 bp was amplified for all tested isolates. Amplification and partial sequencing of the gyrB gene of four isolates was performed using set of primers described by Parkinson et al. (2007). All obtained partial gyrB sequences were identical to each other. According to BLAST analysis (GenBank Acc. Nos. MW508894 - MW508897) they shared 100% of sequence identity with different Xcc strains and 99.5 % with the X.c. pv. raphani pathotype strain, deposited in the NCBI GenBank database. Pathogenicity of the isolates was tested by spraying leaves of 3-week old E. sativa seedlings grown in a commercial potting mix in a greenhouse, with a 24 h-old bacterial culture suspended in sterile distilled water (107 CFU/ml). Xcc strain KFB 105 was used as positive and sterile distilled water as negative control. Inoculated plants were incubated under plastic bags for 48 h and further maintained in a greenhouse at approx. 28°C. On inoculated plants, chlorotic lesions, spreading from the leaf margins, further coalescing into irregular, V-shaped tissue necrosis associated with blackening of veins, developed up to two weeks after inoculation (Fig. 1b, c). The colonies reisolated from symptomatic leaves were identified using PCR, as described above. Based on studied characteristics, all six isolates associated with arugula leaf lesions in Serbia belong to a clonal population. They were identified as X. campestris pv. campestris, the causal agent of black rot, a major disease affecting crucifers, including arugula worldwide (Romero et al., 2008; Rosenthal, et al., 2018). So far, it has been described on Brassica oleracea and B. napus in Serbia (Obradović et al., 2001; Popović et al., 2019). This is the first report of Xcc infecting arugula in this country. The severity of the symptoms developed on artificially inoculated plants indicated significant potential of the pathogen to affect arugula crop in conditions favoring infection. Being a minor crop, accurate information about severity of arugula diseases in Serbia is not available. Lack of crop rotation and close proximity of other Xcc host species on a farm could contribute to further spreading of this problem. Follow up of this arugula disease should reveal the distribution, population structure and genetic diversity of Xcc strains affecting this crop in Serbia.


2021 ◽  
Vol 22 (18) ◽  
pp. 9862
Author(s):  
Xudan Xu ◽  
Tian Ye ◽  
Wenping Zhang ◽  
Tian Zhou ◽  
Xiaofan Zhou ◽  
...  

Quorum sensing (QS) is a microbial cell–cell communication mechanism and plays an important role in bacterial infections. QS-mediated bacterial infections can be blocked through quorum quenching (QQ), which hampers signal accumulation, recognition, and communication. The pathogenicity of numerous bacteria, including Xanthomonas campestris pv. campestris (Xcc), is regulated by diffusible signal factor (DSF), a well-known fatty acid signaling molecule of QS. Cupriavidus pinatubonensis HN-2 could substantially attenuate the infection of XCC through QQ by degrading DSF. The QQ mechanism in strain HN-2, on the other hand, is yet to be known. To understand the molecular mechanism of QQ in strain HN-2, we used whole-genome sequencing and comparative genomics studies. We discovered that the fadT gene encodes acyl-CoA dehydrogenase as a novel QQ enzyme. The results of site-directed mutagenesis demonstrated the requirement of fadT gene for DSF degradation in strain HN-2. Purified FadT exhibited high enzymatic activity and outstanding stability over a broad pH and temperature range with maximal activity at pH 7.0 and 35 °C. No cofactors were required for FadT enzyme activity. The enzyme showed a strong ability to degrade DSF. Furthermore, the expression of fadT in Xcc results in a significant reduction in the pathogenicity in host plants, such as Chinese cabbage, radish, and pakchoi. Taken together, our results identified a novel DSF-degrading enzyme, FadT, in C. pinatubonensis HN-2, which suggests its potential use in the biological control of DSF-mediated pathogens.


2021 ◽  
Author(s):  
Qian Su ◽  
Xin‐Xin Wang ◽  
Ming Leng ◽  
Yan‐Hua Qi ◽  
Fu‐Yuan Pang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document