Approximations for cumulative distribution function of standard normal

Author(s):  
Omar M. Eidous ◽  
Enas Ananbeh
2017 ◽  
Vol 49 (2) ◽  
pp. 388-410 ◽  
Author(s):  
Philip A. Ernst ◽  
Ilie Grigorescu

AbstractWe consider two players, starting withmandnunits, respectively. In each round, the winner is decided with probability proportional to each player's fortune, and the opponent loses one unit. We prove an explicit formula for the probabilityp(m,n) that the first player wins. Whenm~Nx0,n~Ny0, we prove the fluid limit asN→ ∞. Whenx0=y0,z→p(N,N+z√N) converges to the standard normal cumulative distribution function and the difference in fortunes scales diffusively. The exact limit of the time of ruin τNis established as (T- τN) ~N-βW1/β, β = ¼,T=x0+y0. Modulo a constant,W~ χ21(z02/T2).


Author(s):  
Hime Oliveira

This work addresses the problem of sampling from Gaussian probability distributions by means of uniform samples obtained deterministically and directly from space-filling curves (SFCs), a purely topological concept. To that end, the well-known inverse cumulative distribution function method is used, with the help of the probit function,which is the inverse of the cumulative distribution function of the standard normal distribution. Mainly due to the central limit theorem, the Gaussian distribution plays a fundamental role in probability theory and related areas, and that is why it has been chosen to be studied in the present paper. Numerical distributions (histograms) obtained with the proposed method, and in several levels of granularity, are compared to the theoretical normal PDF, along with other already established sampling methods, all using the cited probit function. Final results are validated with the Kullback-Leibler and two other divergence measures, and it will be possible to draw conclusions about the adequacy of the presented paradigm. As is amply known, the generation of uniform random numbers is a deterministic simulation of randomness using numerical operations. That said, sequences resulting from this kind of procedure are not truly random. Even so, and to be coherent with the literature, the expression ”random number” will be used along the text to mean ”pseudo-random number”.


1986 ◽  
Vol 29 (2) ◽  
pp. 167-176 ◽  
Author(s):  
J. P. McClure ◽  
R. Wong

AbstractAn asymptotic approximation is obtained, as k → ∞, for the integralwhere Φ is the cumulative distribution function for a standard normal random variable, and L is a positive constant. The problem is motivated by a question in statistics, and an outline of'the application is given. Similar methods may be used to approximate other integrals involving the normal distribution.


2019 ◽  
Vol 101 (1) ◽  
pp. 157-162
Author(s):  
YILUN WEI ◽  
BO WU ◽  
QIJIN WANG

We generalise Sidel’nikov’s theorem from binary codes to $q$-ary codes for $q>2$. Denoting by $A(z)$ the cumulative distribution function attached to the weight distribution of the code and by $\unicode[STIX]{x1D6F7}(z)$ the standard normal distribution function, we show that $|A(z)-\unicode[STIX]{x1D6F7}(z)|$ is bounded above by a term which tends to $0$ when the code length tends to infinity.


Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


Sign in / Sign up

Export Citation Format

Share Document