time of ruin
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 2)

H-INDEX

17
(FIVE YEARS 1)

2019 ◽  
Vol 51 (03) ◽  
pp. 633-666
Author(s):  
Mauricio Junca ◽  
Harold A. Moreno-Franco ◽  
José Luis Pérez ◽  
Kazutoshi Yamazaki

AbstractWe consider de Finetti’s problem for spectrally one-sided Lévy risk models with control strategies that are absolutely continuous with respect to the Lebesgue measure. Furthermore, we consider the version with a constraint on the time of ruin. To characterize the solution to the aforementioned models, we first solve the optimal dividend problem with a terminal value at ruin and show the optimality of threshold strategies. Next, we introduce the dual Lagrangian problem and show that the complementary slackness conditions are satisfied, characterizing the optimal Lagrange multiplier. Finally, we illustrate our findings with a series of numerical examples.


2019 ◽  
Vol 51 (2) ◽  
pp. 408-424 ◽  
Author(s):  
Florin Avram ◽  
Matija Vidmar

AbstractIn this paper we develop the theory of the W and Z scale functions for right-continuous (upwards skip-free) discrete-time, discrete-space random walks, along the lines of the analogous theory for spectrally negative Lévy processes. Notably, we introduce for the first time in this context the one- and two-parameter scale functions Z, which appear for example in the joint deficit at ruin and time of ruin problems of actuarial science. Comparisons are made between the various theories of scale functions as one makes time and/or space continuous.


Risks ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 110 ◽  
Author(s):  
Sooie-Hoe Loke ◽  
Enrique Thomann

In this paper, a dual risk model under constant force of interest is considered. The ruin probability in this model is shown to satisfy an integro-differential equation, which can then be written as an integral equation. Using the collocation method, the ruin probability can be well approximated for any gain distributions. Examples involving exponential, uniform, Pareto and discrete gains are considered. Finally, the same numerical method is applied to the Laplace transform of the time of ruin.


2018 ◽  
Vol 13 (2) ◽  
pp. 308-319
Author(s):  
David C. M. Dickson

AbstractIn this study, we show how expressions for the probability of ultimate ruin can be obtained from the probability function of the time of ruin in a particular compound binomial risk model, and from the density of the time of ruin in a particular Sparre Andersen risk model. In each case evaluation of generalised binomial series is required, and the argument of each series has a common form. We evaluate these series by creating an identity based on the generalised negative binomial distribution. We also show how the same ideas apply to the probability function of the number of claims in a particular Sparre Andersen model.


2017 ◽  
Vol 49 (2) ◽  
pp. 388-410 ◽  
Author(s):  
Philip A. Ernst ◽  
Ilie Grigorescu

AbstractWe consider two players, starting withmandnunits, respectively. In each round, the winner is decided with probability proportional to each player's fortune, and the opponent loses one unit. We prove an explicit formula for the probabilityp(m,n) that the first player wins. Whenm~Nx0,n~Ny0, we prove the fluid limit asN→ ∞. Whenx0=y0,z→p(N,N+z√N) converges to the standard normal cumulative distribution function and the difference in fortunes scales diffusively. The exact limit of the time of ruin τNis established as (T- τN) ~N-βW1/β, β = ¼,T=x0+y0. Modulo a constant,W~ χ21(z02/T2).


2017 ◽  
Vol 12 (1) ◽  
pp. 23-48 ◽  
Author(s):  
David C.M. Dickson ◽  
Marjan Qazvini

AbstractChen et al. (2014), studied a discrete semi-Markov risk model that covers existing risk models such as the compound binomial model and the compound Markov binomial model. We consider their model and build numerical algorithms that provide approximations to the probability of ultimate ruin and the probability and severity of ruin in a continuous time two-state Markov-modulated risk model. We then study the finite time ruin probability for a discrete m-state model and show how we can approximate the density of the time of ruin in a continuous time Markov-modulated model with more than two states.


Sign in / Sign up

Export Citation Format

Share Document