scholarly journals Asymptotics for the time of ruin in the war of attrition

2017 ◽  
Vol 49 (2) ◽  
pp. 388-410 ◽  
Author(s):  
Philip A. Ernst ◽  
Ilie Grigorescu

AbstractWe consider two players, starting withmandnunits, respectively. In each round, the winner is decided with probability proportional to each player's fortune, and the opponent loses one unit. We prove an explicit formula for the probabilityp(m,n) that the first player wins. Whenm~Nx0,n~Ny0, we prove the fluid limit asN→ ∞. Whenx0=y0,z→p(N,N+z√N) converges to the standard normal cumulative distribution function and the difference in fortunes scales diffusively. The exact limit of the time of ruin τNis established as (T- τN) ~N-βW1/β, β = ¼,T=x0+y0. Modulo a constant,W~ χ21(z02/T2).

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Gina Katherine Sierra Paez ◽  
Matthew Daigle ◽  
Kai Goebel

Estimating accurate Time-of-Failure (ToF) of a system is key in making the decisions that impact operational safety and optimize cost. In this context, it is interesting to note that different approaches have been explored to tackle the problem of estimating ToF. The difference is in part characterized by different definitions of the hazard zones. The conventional definition for the cumulative distribution function (CDF) calculation is assumed to have well-defined hazard zones, that is, hazard zones defined as a function of the system state trajectory. An alternate method suggests the use of hazard zones defined as a function of the system state at time , instead of hazard zones defined as a function of system state up to and including time k (Acuña and Orchard 2018, 2017). This paper explores these differences and their impact on ToF estimation. Results for the conventional CDF definition indicated that, (i) the cumulative distribution function is always an increasing function of time, even when realizations of the degradation process are not monotonic, (ii) the sum of all probabilities is always 1 and does not need to be normalized, and (iii) all probabilities are positive and less than or equal to 1. Similar results are not observed for CDF calculation with hazard zones defined as a function only of the system state at time k. Results for ToF estimation using Acuña's definition differ, suggesting that there is an underlying assumption of independence in the hazard zone definition.  Therefore, we present an alternate definition of hazard zone which guarantees the properties of a well-defined CDF with a more straightforward ToF definition.


Author(s):  
Hime Oliveira

This work addresses the problem of sampling from Gaussian probability distributions by means of uniform samples obtained deterministically and directly from space-filling curves (SFCs), a purely topological concept. To that end, the well-known inverse cumulative distribution function method is used, with the help of the probit function,which is the inverse of the cumulative distribution function of the standard normal distribution. Mainly due to the central limit theorem, the Gaussian distribution plays a fundamental role in probability theory and related areas, and that is why it has been chosen to be studied in the present paper. Numerical distributions (histograms) obtained with the proposed method, and in several levels of granularity, are compared to the theoretical normal PDF, along with other already established sampling methods, all using the cited probit function. Final results are validated with the Kullback-Leibler and two other divergence measures, and it will be possible to draw conclusions about the adequacy of the presented paradigm. As is amply known, the generation of uniform random numbers is a deterministic simulation of randomness using numerical operations. That said, sequences resulting from this kind of procedure are not truly random. Even so, and to be coherent with the literature, the expression ”random number” will be used along the text to mean ”pseudo-random number”.


2016 ◽  
Vol 55 (1) ◽  
pp. 112-118
Author(s):  
Kazimieras Padvelskis ◽  
Ruslan Prigodin

We consider an approximation of a cumulative distribution function F(x) by the cumulative distributionfunction G(x) of the Irwin law. In this case, a function F(x) can be cumulative distribution functions of sums (products) ofindependent (dependent) random variables. Remainder term of the approximation is estimated by the cumulant method.The cumulant method is used by introducing special cumulants, satisfying the V. Statulevičius type condition. The mainresult is a nonuniform bound for the difference |F(x)-G(x)| in terms of special cumulants of the symmetric cumulativedistribution function F(x).


1986 ◽  
Vol 29 (2) ◽  
pp. 167-176 ◽  
Author(s):  
J. P. McClure ◽  
R. Wong

AbstractAn asymptotic approximation is obtained, as k → ∞, for the integralwhere Φ is the cumulative distribution function for a standard normal random variable, and L is a positive constant. The problem is motivated by a question in statistics, and an outline of'the application is given. Similar methods may be used to approximate other integrals involving the normal distribution.


2019 ◽  
Vol 101 (1) ◽  
pp. 157-162
Author(s):  
YILUN WEI ◽  
BO WU ◽  
QIJIN WANG

We generalise Sidel’nikov’s theorem from binary codes to $q$-ary codes for $q>2$. Denoting by $A(z)$ the cumulative distribution function attached to the weight distribution of the code and by $\unicode[STIX]{x1D6F7}(z)$ the standard normal distribution function, we show that $|A(z)-\unicode[STIX]{x1D6F7}(z)|$ is bounded above by a term which tends to $0$ when the code length tends to infinity.


Sign in / Sign up

Export Citation Format

Share Document