A Compressible Approach to Solve Combined Natural Convection-Radiation Heat Transfer in Participating Media

2014 ◽  
Vol 66 (5) ◽  
pp. 446-469 ◽  
Author(s):  
Masoud Darbandi ◽  
Bagher Abrar
PAMM ◽  
2005 ◽  
Vol 5 (1) ◽  
pp. 575-576 ◽  
Author(s):  
Jan Langebach ◽  
Stephan Senin ◽  
Christian Karcher

Author(s):  
Pablo E. Araya Go´mez ◽  
Miles Greiner

Two-dimensional simulations of steady natural convection and radiation heat transfer for a 14×14 pressurized water reactor (PWR) spent nuclear fuel assembly within a square basket tube of a typical transport package were conducted using a commercial computational fluid dynamics package. The assembly is composed of 176 heat generating fuel rods and 5 larger guide tubes. The maximum cladding temperature was determined for a range of assembly heat generation rates and uniform basket wall temperatures, with both helium and nitrogen backfill gases. The results are compared with those from earlier simulations of a 7×7 boiling water reactor (BWR). Natural convection/radiation simulations exhibited measurably lower cladding temperatures only when nitrogen is the backfill gas and the wall temperature is below 100°C. The reduction in temperature is larger for the PWR assembly than it was for the BWR. For nitrogen backfill, a ten percent increase in the cladding emissivity (whose value is not well characterized) causes a 4.7% reduction in the maximum cladding to wall temperature difference in the PWR, compared to 4.3% in the BWR at a basket wall temperature of 400°C. Helium backfill exhibits reductions of 2.8% and 3.1% for PWR and BWR respectively. Simulations were performed in which each guide tube was replaced with four heat generating fuel rods, to give a homogeneous array. They show that the maximum cladding to wall temperature difference versus total heat generation within the assembly is not sensitive to this geometric variation.


2008 ◽  
Author(s):  
Mohammad Hadi Bordbar ◽  
Timo Hyppa¨nen

This paper describes the theoretical bases of the Radiative Exchange Method, a new numerical method for simulating radiation heat transfer. By considering radiative interaction between all points of the geometry and solving the radiation balance equation in a mesh structure coarser than the structure used in computational fluid flow calculation, this method is able to simulate radiative heat transfer in arbitrary 3D space with absorbing, emitting and scattering media surrounded by emitting, absorbing and reflecting surfaces. A new concept is introduced, that of the exchange factors between the different elements that are necessary for completing the radiative balance equation set. Using this method leads to a set of algebraic equations for the radiative outgoing power from each coarse cell being produced and the result of this set of equations was then used to calculate the volumetric radiative source term in the fine cell structure. The formulation of the exchange factor for a three-dimensional state and also a mesh size analysis that was conducted to optimize the accuracy and runtime are presented. The results of this model to simulate typical 3D furnace shape geometry, is verified by comparison with those of other numerical methods.


Sign in / Sign up

Export Citation Format

Share Document