honeycomb core
Recently Published Documents


TOTAL DOCUMENTS

638
(FIVE YEARS 184)

H-INDEX

34
(FIVE YEARS 9)

Author(s):  
Anil Kumar ◽  
◽  
Surjit Angra ◽  
Arindam Kumar Chanda ◽  
◽  
...  

A sandwich structure consists of three main parts i.e. the facing skins, the core and the adhesive. It acts in a way similar to that of the I- Beam. In this research, a sandwich structure has been designed with a regular hexagon honey-comb core made up of Kevlar® and face sheet of carbon fiber. The design has been modelled and the model has also been validated with the experimental and analytical method. Six different configurations of sandwich structures have been proposed. Out of these six, three configurations have the varying cell size i.e. 3.2 mm, 4 mm and 4.8 mm and the other three configurations have the varying panel width i.e. 40 mm, 45 mm and 50 mm keeping rest of the design parameters unchanged. Using ANSYS, analysis has been performed for all these six configurations and equivalent stiffness has been calculated. It has been observed that the honeycomb core cell size does not have a significant effect on the stiffness properties of a composite sandwich panel. The analysis also reveals that with the increased panel width the stiffness of composite panel increases significantly.


2021 ◽  
Vol 24 (4) ◽  
pp. 49-60
Author(s):  
Borys V. Uspenskyi ◽  
◽  
Kostiantyn V. Avramov ◽  
Ihor I. Derevianko ◽  
◽  
...  

Presented is a model of the dynamic deformation of a three-layer cylindrical shell with a honeycomb core, manufactured by fused deposition modeling (FDM), and skins reinforced with oriented carbon nano-tubes (CNT). A ULTEM 9085 thermoplastic-based honeycomb core is considered. To analyze the stress-strain state of the honeycomb core, a finite element homogenization procedure was used. As a result of this procedure, the dynamic response of the honeycomb core is modeled by a homogeneous orthotropic material, whose mechanical properties correspond to those of the core. The proposed model is based on the high-order theory, extended for the analysis of sandwich structures. The skin displacement projections are expanded along the transverse coordinate up to quadratic terms. The honeycomb core displacement projections are expanded along the transverse coordinate up to cubic terms. To ensure the integrity of the structure, shell displacement continuity conditions at the junction of the layers are used. The investigation of linear vibrations of the shell is carried out using the Rayleigh-Ritz method. For its application, the potential and kinetic energies of the structure are derived. Considered are the natural frequencies and modes of vibrations of a one-side clamped cylindrical sandwich shell. The dependence of the forms and frequencies of vibrations on the honeycomb core thickness and the direction of reinforcement of the shell skins have been investigated. It was found that the eigenforms of a sandwich shell are characterized by a smaller number of waves in the circumferential direction, as well as a much earlier appearance of axisymmetric forms. This means that when analyzing the resonant vibrations of a sandwich shell, it is necessary to take into account axisymmetric shapes. Changing the direction of reinforcement of the skins with CNTs makes it possible to significantly influence the frequencies of the natural vibrations of the shell, which are characterized by a nonzero number of waves in the circumferential direction. It was found that this parameter does not affect the frequencies of the axisymmetric shapes of the shell under consideration.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5353-5359
Author(s):  
MICHAL SKOVAJSA ◽  
◽  
FRANTISEK SEDLACEK ◽  
MARTIN MRAZEK ◽  
◽  
...  

This paper deal with comparison of mechanical properties of composite sandwich panel with aluminium honeycomb core which is determined by experimental measurement, analytic calculation and numerical simulation. The goal was to compared four composite sandwich panels. The composite sandwich panels were made of two different aluminium honeycomb cores with density 32 and 72 kg.m-3 and two different layup of skin with 4 and 5 layers. The comparison was performed on a three-point bend test with support span 400 mm. This paper confirms the possibility of a very precise design of a composite sandwich panel with an aluminium honeycomb core using analytical calculation and numerical simulation.


2021 ◽  
pp. 109963622110536
Author(s):  
Vahid Pourriahi ◽  
Mohammad Heidari-Rarani ◽  
Amir Torabpour Isfahani

The hexagonal honeycomb core sandwich panels used in the satellite structure are subjected to severe vibration during launch. Therefore, the amounts of natural frequencies of these panels are of great importance for design engineers. Three-dimensional finite element modeling of the core considering all geometric parameters (i.e., a high-fidelity model) to achieve accurate results is not cost-effective. The honeycomb core is traditionally equivalent to a homogenized continuum core (i.e., a low-fidelity model) using simple analytical relations with ignoring the adhesive layer at the double cell-walls and radius of inclined cell-wall curvature. In this study, analytical formulations are first presented for the prediction of the equivalent elastic properties of a hexagonal aluminum honeycomb with considering all geometric parameters including adhesive layer thickness, cell-wall thickness, inclined cell-wall length, radius of inclined cell-wall curvature at the intersection, internal cell-wall angle, and honeycomb height. Then, two aluminum honeycomb core sandwich beams with free-free boundary conditions are modeled and analyzed in Abaqus finite element software, one with 3D high-fidelity core and the other with 3D low-fidelity core. In order to validate the results of the equivalent model, the modal analysis test was performed and the experimental natural frequencies were compared. The obtained results show a good agreement between the 3D low-fidelity and high-fidelity finite element models and experimental results. In addition, the influence of the above-mentioned geometric parameters has been investigated on the natural frequencies of a sandwich beam. [Formula: see text]


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8183
Author(s):  
Piotr Fiborek ◽  
Paweł Kudela

One of the axioms of structural health monitoring states that the severity of damage assessment can only be done in a learning mode under the supervision of an expert. Therefore, a numerical analysis was conducted to gain knowledge regarding the influence of the damage size on the propagation of elastic waves in a honeycomb sandwich composite panel. Core-skin debonding was considered as damage. For this purpose, a panel was modelled taking into account the real geometry of the honeycomb core using the time-domain spectral element method and two-dimensional elements. The presented model was compared with the homogenized model of the honeycomb core and validated in the experimental investigation. The result of the parametric study is a function of the influence of damage on the amplitude and energy of propagating waves.


Sign in / Sign up

Export Citation Format

Share Document