High-order compact difference scheme of 1D nonlinear degenerate convection–reaction–diffusion equation with adaptive algorithm

2019 ◽  
Vol 75 (1) ◽  
pp. 43-66 ◽  
Author(s):  
Xiaoliang Zhu ◽  
Hongxing Rui
AIAA Journal ◽  
1994 ◽  
Vol 32 (9) ◽  
pp. 1766-1773 ◽  
Author(s):  
Sheng-Tao Yu ◽  
Lennart S. Hultgren ◽  
Nan-Suey Liu

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xiaozhong Yang ◽  
Xu Dang

Abstract The fractional reaction–diffusion equation has profound physical and engineering background, and its rapid solution research is of important scientific significance and engineering application value. In this paper, we propose a parallel computing method of mixed difference scheme for time fractional reaction–diffusion equation and construct a class of improved alternating segment Crank–Nicolson (IASC–N) difference schemes. The class of parallel difference schemes constructed in this paper, based on the classical Crank–Nicolson (C–N) scheme and classical explicit and implicit schemes, combines with alternating segment techniques. We illustrate the unique existence, unconditional stability, and convergence of the parallel difference scheme solution theoretically. Numerical experiments verify the theoretical analysis, which shows that the IASC–N scheme has second order spatial accuracy and $2-\alpha $ 2 − α order temporal accuracy, and the computational efficiency is greatly improved compared with the implicit scheme and C–N scheme. The IASC–N scheme has ideal computation accuracy and obvious parallel computing properties, showing that the IASC–N parallel difference method is effective for solving time fractional reaction–diffusion equation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Wang ◽  
Yongbin Ge

A high-order compact difference scheme for solving the two-dimensional (2D) elliptic problems is proposed by including compact approximations to the leading truncation error terms of the central difference scheme. A multigrid method is employed to overcome the difficulties caused by conventional iterative methods when they are used to solve the linear algebraic system arising from the high-order compact scheme. Numerical experiments are conducted to test the accuracy and efficiency of the present method. The computed results indicate that the present scheme achieves the fourth-order accuracy and the effect of the multigrid method for accelerating the convergence speed is significant.


Sign in / Sign up

Export Citation Format

Share Document