INTRODUCING PROOF TECHNIQUES USING THE LOGICAL GAMEMINE HUNTER

PRIMUS ◽  
1995 ◽  
Vol 5 (2) ◽  
pp. 108-112 ◽  
Author(s):  
Allan Alexander Struthers
Keyword(s):  
2018 ◽  
Vol 99 (1) ◽  
pp. 51-55
Author(s):  
MICHAEL D. HIRSCHHORN ◽  
JAMES A. SELLERS

We consider the function $f(n)$ that enumerates partitions of weight $n$ wherein each part appears an odd number of times. Chern [‘Unlimited parity alternating partitions’, Quaest. Math. (to appear)] noted that such partitions can be placed in one-to-one correspondence with the partitions of $n$ which he calls unlimited parity alternating partitions with smallest part odd. Our goal is to study the parity of $f(n)$ in detail. In particular, we prove a characterisation of $f(2n)$ modulo 2 which implies that there are infinitely many Ramanujan-like congruences modulo 2 satisfied by the function $f.$ The proof techniques are elementary and involve classical generating function dissection tools.


Proofs 101 ◽  
2020 ◽  
pp. 15-36
Author(s):  
Joseph Kirtland
Keyword(s):  

2021 ◽  
Vol 23 (05) ◽  
pp. 319-324
Author(s):  
Mr. Balaji. N ◽  
◽  
Dr. Karthik Pai B H ◽  

Discrete mathematics is one of the significant part of K-11 and K-12 grade college classrooms. In this contribution, we discuss the usefulness of basic elementary, some of the intermediate discrete mathematics for K-11 and K-12 grade colleges. Then we formulate the targets and objectives of this education study. We introduced the discrete mathematics topics such as set theory and their representation, relations, functions, mathematical induction and proof techniques, counting and its underlying principle, probability and its theory and mathematical reasoning. Core of this contribution is proof techniques, counting and mathematical reasoning. Since all these three concepts of discrete mathematics is strongly connected and creates greater impact on students. Moreover, it is potentially useful in their life also out of the college study. We explain the importance, applications in computer science and the comments regarding introduction of such topics in discrete mathematics. Last part of this article provides the theoretical knowledge and practical usability will strengthen the made them understand easily.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 144 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

The main aim of this paper is to introduce the degenerate truncated forms of multifarious special polynomials and numbers and is to investigate their various properties and relationships by using the series manipulation method and diverse special proof techniques. The degenerate truncated exponential polynomials are first considered and their several properties are given. Then the degenerate truncated Stirling polynomials of the second kind are defined and their elementary properties and relations are proved. Also, the degenerate truncated forms of the bivariate Fubini and Bell polynomials and numbers are introduced and various relations and formulas for these polynomials and numbers, which cover several summation formulas, addition identities, recurrence relationships, derivative property and correlations with the degenerate truncated Stirling polynomials of the second kind, are acquired. Thereafter, the truncated degenerate Bernoulli and Euler polynomials are considered and multifarious correlations and formulas including summation formulas, derivation rules and correlations with the degenerate truncated Stirling numbers of the second are derived. In addition, regarding applications, by introducing the degenerate truncated forms of the classical Bernstein polynomials, we obtain diverse correlations and formulas. Some interesting surface plots of these polynomials in the special cases are provided.


PRIMUS ◽  
2010 ◽  
Vol 20 (5) ◽  
pp. 383-391 ◽  
Author(s):  
Brian A. Snyder
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document