scholarly journals On Degenerate Truncated Special Polynomials

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 144 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

The main aim of this paper is to introduce the degenerate truncated forms of multifarious special polynomials and numbers and is to investigate their various properties and relationships by using the series manipulation method and diverse special proof techniques. The degenerate truncated exponential polynomials are first considered and their several properties are given. Then the degenerate truncated Stirling polynomials of the second kind are defined and their elementary properties and relations are proved. Also, the degenerate truncated forms of the bivariate Fubini and Bell polynomials and numbers are introduced and various relations and formulas for these polynomials and numbers, which cover several summation formulas, addition identities, recurrence relationships, derivative property and correlations with the degenerate truncated Stirling polynomials of the second kind, are acquired. Thereafter, the truncated degenerate Bernoulli and Euler polynomials are considered and multifarious correlations and formulas including summation formulas, derivation rules and correlations with the degenerate truncated Stirling numbers of the second are derived. In addition, regarding applications, by introducing the degenerate truncated forms of the classical Bernstein polynomials, we obtain diverse correlations and formulas. Some interesting surface plots of these polynomials in the special cases are provided.

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 112 ◽  
Author(s):  
Irem Kucukoglu ◽  
Burcin Simsek ◽  
Yilmaz Simsek

The aim of this paper is to construct generating functions for new families of combinatorial numbers and polynomials. By using these generating functions with their functional and differential equations, we not only investigate properties of these new families, but also derive many new identities, relations, derivative formulas, and combinatorial sums with the inclusion of binomials coefficients, falling factorial, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), the Poisson–Charlier polynomials, combinatorial numbers and polynomials, the Bersntein basis functions, and the probability distribution functions. Furthermore, by applying the p-adic integrals and Riemann integral, we obtain some combinatorial sums including the binomial coefficients, falling factorial, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), and the Cauchy numbers (or the Bernoulli numbers of the second kind). Finally, we give some remarks and observations on our results related to some probability distributions such as the binomial distribution and the Poisson distribution.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Ugur Duran ◽  
Serkan Araci ◽  
Mehmet Acikgoz

In this paper, we consider Bell-based Stirling polynomials of the second kind and derive some useful relations and properties including some summation formulas related to the Bell polynomials and Stirling numbers of the second kind. Then, we introduce Bell-based Bernoulli polynomials of order α and investigate multifarious correlations and formulas including some summation formulas and derivative properties. Also, we acquire diverse implicit summation formulas and symmetric identities for Bell-based Bernoulli polynomials of order α. Moreover, we attain several interesting formulas of Bell-based Bernoulli polynomials of order α arising from umbral calculus.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han Young Kim ◽  
Jongkyum Kwon

The new type degenerate of Bell polynomials and numbers were recently introduced, which are a degenerate version of Bell polynomials and numbers and are different from the previously introduced partially degenerate Bell polynomials and numbers. Several expressions and identities on those polynomials and numbers were obtained. In this paper, as a further investigation of the new type degenerate Bell polynomials, we derive several identities involving those degenerate Bell polynomials, Stirling numbers of the second kind and Carlitz’s degenerate Bernoulli or degenerate Euler polynomials. In addition, we obtain an identity connecting the degenerate Bell polynomials, Cauchy polynomials, Bernoulli numbers, Stirling numbers of the second kind and degenerate Stirling numbers of the second kind.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 431 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we introduce the two-variable truncated Fubini polynomials and numbers and then investigate many relations and formulas for these polynomials and numbers, including summation formulas, recurrence relations, and the derivative property. We also give some formulas related to the truncated Stirling numbers of the second kind and Apostol-type Stirling numbers of the second kind. Moreover, we derive multifarious correlations associated with the truncated Euler polynomials and truncated Bernoulli polynomials.


Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Ugur Duran ◽  
Mehmet Acikgoz

In the present paper, the (p,q)-Hermite based Apostol type Frobenius-Euler polynomials and numbers are firstly considered and then diverse basic identities and properties for the mentioned polynomials and numbers, including addition theorems, difference equations, integral representations, derivative properties, recurrence relations. Moreover, we provide summation formulas and relations associated with the Stirling numbers of the second kind.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1011 ◽  
Author(s):  
Dae Sik Lee ◽  
Hye Kyung Kim ◽  
Lee-Chae Jang

In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper is divided two parts. First, we introduce a new type of the type 2 poly-Euler polynomials and numbers constructed from the modified polyexponential function, the so-called type 2 poly-Euler polynomials and numbers. We show various expressions and identities for these polynomials and numbers. Some of them involving the (poly) Euler polynomials and another special numbers and polynomials such as (poly) Bernoulli polynomials, the Stirling numbers of the first kind, the Stirling numbers of the second kind, etc. In final section, we introduce a new type of the type 2 degenerate poly-Euler polynomials and the numbers defined in the previous section. We give explicit expressions and identities involving those polynomials in a similar direction to the previous section.


Author(s):  
Waseem A. Khan

The main purpose of this paper is to introduce a new class of $q$-Hermite-Fubini numbers and polynomials by combining the $q$-Hermite polynomials and $q$-Fubini polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive $q$-integers.  Also, we establish some relationships for $q$-Hermite-Fubini polynomials associated with $q$-Bernoulli polynomials, $q$-Euler polynomials and $q$-Genocchi polynomials and $q$-Stirling numbers of the second kind.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Letelier Castilla ◽  
William Ramírez ◽  
Alejandro Urieles

Through a modification on the parameters associated with generating function of the q-extensions for the Apostol type polynomials of order α and level m, we obtain some new results related to a unified presentation of the q-analog of the generalized Apostol type polynomials of order α and level m. In addition, we introduce some algebraic and differential properties for the q-analog of the generalized Apostol type polynomials of order α and level m and the relation of these with the q-Stirling numbers of the second kind, the generalized q-Bernoulli polynomials of level m, the generalized q-Apostol type Bernoulli polynomials, the generalized q-Apostol type Euler polynomials, the generalized q-Apostol type Genocchi polynomials of order α and level m, and the q-Bernstein polynomials.


Sign in / Sign up

Export Citation Format

Share Document