Lift-off nulling and internal state inspection of multi-layer conductive structures by combined signal features in pulsed eddy current testing

2018 ◽  
Vol 33 (3) ◽  
pp. 272-289 ◽  
Author(s):  
Pingjie Huang ◽  
Xuwei Luo ◽  
Dibo Hou ◽  
Zhaohe Yang ◽  
Ling Zhao ◽  
...  
2012 ◽  
Vol 17 (4) ◽  
pp. 298-301 ◽  
Author(s):  
Duck-Gun Park ◽  
C.S. Angani ◽  
M.B. Kishore ◽  
C.G. Kim ◽  
D.H. Lee

Author(s):  
Mingyang Lu ◽  
Xiaobai Meng ◽  
Ruochen Huang ◽  
Liming Chen ◽  
Anthony Peyton ◽  
...  

Eddy current testing can be used to interrogate steels but it is hampered by the lift-off distance of the sensor. Previously, the lift-off point of intersection (LOI) feature has been found for the pulsed eddy current (PEC) testing. In this paper, a lift-off invariant inductance (LII) feature is proposed for the multi-frequency eddy current (MEC) testing, which merely targets the ferromagnetic steels. That is, at a certain working frequency, the measured inductance signal is found nearly immune to the lift-off distance of the sensor. Such working frequency and inductance are termed as the lift-off invariant frequency (LIF) and LII. Through simulations and experimental measurements of different steels under the multi-frequency manner, the LII has been verified to be merely related to the sensor parameters and independent of different steels. By referring to the LIF of the test piece and using an iterative inverse solver, one of the steel properties (either the electrical conductivity or magnetic permeability) can be reconstructed with a high accuracy.


2021 ◽  
Vol 11 (10) ◽  
pp. 4356
Author(s):  
Qing Zhang ◽  
Xinjun Wu

The wall-thinning measurement of ferromagnetic plates covered with insulations and claddings is a main challenge in petrochemical and power generation industries. Pulsed eddy current testing (PECT) is considered as a promising method. However, the accuracy is limited due to the interference factors such as lift-off and cladding. In this study, by decoupling analytic solution, a feature only sensitive to plate thickness is proposed. Based on the electromagnetic waves reflection and transmission theory, cladding-induced interference is firstly decoupled from the analytical model. Moreover, by using the first integral mean value theorem, interferences of insulation and the lift-off are decoupled, too. Hence, the method is proposed by calculating Euclidean distances between the normalized detection signal and normalized reference signal as the feature to assess wall thinning. Its effectiveness under various conditions is examined and results show that the proposed feature is only sensitive to the ferromagnetic plate thickness. Finally, the experiment is carried on to verify this method practicable.


Author(s):  
Mingyang Lu ◽  
Xiaobai Meng ◽  
Ruochen Huang ◽  
Liming Chen ◽  
Anthony Peyton ◽  
...  

Eddy current testing can be used to interrogate steels but it is hampered by the lift-off distance of the sensor. Previously, the lift-off point of intersection (LOI) feature has been found for the pulsed eddy current (PEC) testing. In this paper, a lift-off invariant inductance (LII) feature is proposed for the multi-frequency eddy current (MEC) testing, which merely targets the ferromagnetic steels. That is, at a certain working frequency, the measured inductance signal is found nearly immune to the lift-off distance of the sensor. Such working frequency and inductance are termed as the lift-off invariant frequency (LIF) and LII. Through simulations and experimental measurements of different steels under the multi-frequency manner, the LII has been verified to be merely related to the sensor parameters and independent of different steels. By referring to the LIF of the test piece and using an iterative inverse solver, one of the steel properties (either the electrical conductivity or magnetic permeability) can be reconstructed with a high accuracy.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 47-55
Author(s):  
Takuma Tomizawa ◽  
Haicheng Song ◽  
Noritaka Yusa

This study proposes a probability of detection (POD) model to quantitatively evaluate the capability of eddy current testing to detect flaws on the inner surface of pressure vessels cladded by stainless steel and in the presence of high noise level. Welded plate samples with drill holes were prepared to simulate corrosion that typically appears on the inner surface of large-scale pressure vessels. The signals generated by the drill holes and the noise caused by the weld were examined using eddy current testing. A hit/miss-based POD model with multiple flaw parameters and multiple signal features was proposed to analyze the measured signals. It is shown that the proposed model is able to more reasonably characterize the detectability of eddy current signals compared to conventional models that consider a single signal feature.


Sign in / Sign up

Export Citation Format

Share Document