Trans-1,4-polybutadiene: Influences of Lewis bases on polymerization of butadiene with supported titanium catalyst systems

Author(s):  
Umesh C. Makwana ◽  
Virendrakumar Gupta
1983 ◽  
Vol 21 (9) ◽  
pp. 2697-2711 ◽  
Author(s):  
S. R. Rafikov ◽  
Yu. B. Monakov ◽  
G. A. Tolstikov ◽  
N. G. Marina ◽  
N. Kh. Minchenkova ◽  
...  

1991 ◽  
Vol 33 (9) ◽  
pp. 1783-1791
Author(s):  
L.V. Smirnova ◽  
L.A. Yatsenko ◽  
A.G. Boldyrev ◽  
S.L. Panasyuk ◽  
Ye.N. Kropacheva

2019 ◽  
Vol 38 (9) ◽  
pp. 2150-2155 ◽  
Author(s):  
Jared L. Barr ◽  
Amit Kumar ◽  
Davide Lionetti ◽  
Carlos A. Cruz ◽  
James D. Blakemore

2020 ◽  
Author(s):  
Eric Greve ◽  
Jacob D. Porter ◽  
Chris Dockendorff

Dual amine/pi Lewis acid catalyst systems have been reported for intramolecular direct additions of aldehydes/ketones to unactivated alkynes and occasionally alkenes, but related intermolecular reactions are rare and not presently of significant synthetic utility, likely due to undesired coordination of enamine intermediates to the metal catalyst. We reasoned that bulky metal ligands and bulky amine catalysts could minimize catalyst poisoning and could facilitate certain examples of direct intermolecular additions of aldehyde/ketones to alkenes/alkynes. Density Functional Theory (DFT) calculations were performed that suggested that PyBOX-Pt(II) catalysts for alkene/alkyne activation could be combined with MacMillan’s imidazolidinone organocatalyst for aldehyde/ketone activation to facilitate desirable C-C bond formations, and certain reactions were calculated to be more exergonic than catalyst poisoning pathways. As calculated, preformed enamines generated from the MacMillan imidazolidinone did not displace ethylene from a biscationic (<i>t</i>-Bu)PyBOX-Pt<sup>2+</sup>complex, but neither were the desired C-C bond formations observed under several different conditions.


2020 ◽  
Author(s):  
Eric Greve ◽  
Jacob D. Porter ◽  
Chris Dockendorff

Dual amine/pi Lewis acid catalyst systems have been reported for intramolecular direct additions of aldehydes/ketones to unactivated alkynes and occasionally alkenes, but related intermolecular reactions are rare and not presently of significant synthetic utility, likely due to undesired coordination of enamine intermediates to the metal catalyst. We reasoned that bulky metal ligands and bulky amine catalysts could minimize catalyst poisoning and could facilitate certain examples of direct intermolecular additions of aldehyde/ketones to alkenes/alkynes. Density Functional Theory (DFT) calculations were performed that suggested that PyBOX-Pt(II) catalysts for alkene/alkyne activation could be combined with MacMillan’s imidazolidinone organocatalyst for aldehyde/ketone activation to facilitate desirable C-C bond formations, and certain reactions were calculated to be more exergonic than catalyst poisoning pathways. As calculated, preformed enamines generated from the MacMillan imidazolidinone did not displace ethylene from a biscationic (<i>t</i>-Bu)PyBOX-Pt<sup>2+</sup>complex, but neither were the desired C-C bond formations observed under several different conditions.


2019 ◽  
Author(s):  
Pavlo Kravchenko ◽  
Craig Plaisance ◽  
David Hibbitts

This manuscript outlines the utility and power of our computational catalysis interface. This interface has been developed by our group and used extensively to study metal, ceramic, and zeolite catalyst systems.


2019 ◽  
Author(s):  
Moritz Wolf ◽  
Nico Fischer ◽  
Michael Claeys

<p>The inert nature of graphitic samples allows for characterisation of rather isolated supported nanoparticles in model catalysts, as long as sufficiently large inter-particle distances are obtained. However, the low surface area of graphite and the little interaction with nanoparticles result in a challenging application of conventional preparation routes in practice. In the present study, a set of graphitic carbon materials was characterised in order to identify potential support materials for the preparation of model catalyst systems. Various sizes of well-defined Co<sub>3</sub>O<sub>4</sub> nanoparticles were synthesised separately and supported onto exfoliated graphite powder, that is graphite after solvent-assisted exfoliation <i>via</i> ultrasonication resulting in thinner flakes with increased specific surface area. The developed model catalysts are ideally suited for sintering studies of isolated nano-sized cobaltous particles as the graphitic support material does not provide distinct metal-support interaction. Furthermore, the differently sized cobaltous particles in the various model systems render possible studies on structural dependencies of activity, selectivity, and deactivation in cobalt oxide or cobalt catalysed reactions.</p>


2021 ◽  
Vol 25 ◽  
Author(s):  
Réka Henyecz ◽  
György Keglevich

Abstract: Microwave (MW)-assistance may be a powerful tool also in the Hirao P–C coupling reactions of vinyl/aryl halides with dialkyl phosphites in the presence of Pd-catalysts/P-ligands elaborated forty years ago. This review surveys the development of this reaction by showing the expansion of the reagents and catalysts, as well as the information accumulated. The stress was laid on the “green” aspects, the simplification of the catalyst systems, and the reliable mechanistic details in order to be able to establish the optimum conditions. The best protocol involves the use of some excess of the >P(O)H reagent to ensure the PdII→Pd0 reduction and, via its trivalent tautomeric form (>POH) also the P-ligand. The overall rate is the result of two factors, the activity of the catalyst complex formed, and the reactivity of the reactants in the P–C coupling reactions. Both components are influenced by the nature of the aryl substituents in Ar2P(O)H. NiII salts may also be used as the catalyst precursor, however, despite the PdII→Pd0→PdII route, in this case, a NiII→NiIV→NiII sequence was proved.


2013 ◽  
Vol 17 (3) ◽  
pp. 204-219 ◽  
Author(s):  
Marta Feroci ◽  
Isabella Chiarotto ◽  
Achille Inesi

Sign in / Sign up

Export Citation Format

Share Document