Large-eddy simulation of buoyancy-driven natural ventilation in an enclosure with a point heat source

2007 ◽  
Vol 21 (5-6) ◽  
pp. 231-245 ◽  
Author(s):  
Ibrahim E. Abdalla ◽  
Malcolm J. Cook ◽  
Simon J. Rees ◽  
Zhiyin Yang
Author(s):  
Hitoshi Suto ◽  
Yasuo Hattori

A large-eddy simulation (LES) of a buoyant plume past a bluff body is performed. A round heat source is placed at the center of a horizontal flat wall, and a bluff body in the shape of a thick round plate is floating right above the heat source. The modified Rayleigh number based on the total heat input is set at 1.2×1010. On the basis of past studies, the Smagorinsky model is adopted as a subgrid-scale (SGS) model, and a partial slip boundary condition based on the wall law is applied to a horizontal flat wall and a disk surface. The validity of numerical results is ascertained by comparison with theoretical solution and experimental data. The blocking of upward flow and imparting turbulence through a bluff body vary the process of developing a buoyant plume, while properties of a fully developed plume rarely vary. With heat from a bluff body, another buoyant plume is formed near the center, piled with upward flow passing around the bluff body. Moreover, main positions of buoyant production of turbulent kinetic energy move a point from near the side of the bluff body to a point near the central axis. This affects the transition to a fully developed plume in turbulence statistics.


2014 ◽  
Author(s):  
A. Idris ◽  
B. P. Huynh

The natural ventilation contributes the improvement of internal thermal comfort and internal air quality when applied properly. An investigation of single-sided double opening was performed to a 3-dimensional rectangular-box room using a commercial Computational Fluid Dynamics (CFD) software package of ESI group. Sixteen models with different location of double-openings were investigated. The large eddy simulation (LES) turbulence model was used to predict the air’s flow rate and air flow pattern. The governing equations for large eddy motion was obtained by filtering the Navier-Stokes and continuity equations. From the overall results, the lowest and the highest air flow rates were obtained to be 1.14 × 10−3 m3/s and 2.12 × 100 m3/s respectively. The location & arrangement of opening influences the air flow rate and air flow pattern.


Sign in / Sign up

Export Citation Format

Share Document