scholarly journals Multiple Sequence Alignment Accuracy and Phylogenetic Inference

2006 ◽  
Vol 55 (2) ◽  
pp. 314-328 ◽  
Author(s):  
T Heath Ogden ◽  
Michael S Rosenberg
2020 ◽  
Author(s):  
Colin Young ◽  
Sarah Meng ◽  
Niema Moshiri

AbstractThe use of computational techniques to analyze viral sequence data and ultimately inform public health intervention has become increasingly common in the realm of epidemiology. These methods typically attempt to make epidemiological inferences based on multiple sequence alignments and phylogenies estimated from the raw sequence data. Like all estimation techniques, multiple sequence alignment and phylogenetic inference tools are error-prone, and the impacts of such imperfections on downstream epidemiological inferences are poorly understood. To address this, we executed multiple commonly-used workflows for conducting viral phylogenetic analyses on simulated viral sequence data modeling HIV, HCV, and Ebola, and we computed multiple methods of accuracy motivated by transmission clustering techniques. For multiple sequence alignment, MAFFT consistently outperformed MUSCLE and Clustal Omega in both accuracy and runtime. For phylogenetic inference, FastTree 2, IQ-TREE, RAxML-NG, and PhyML had similar topological accuracies, but branch lengths and pairwise distances were consistently most accurate in phylogenies inferred by RAxML-NG. However, FastTree 2 was orders of magnitude faster than the other tools, and when the other tools were used to optimize branch lengths along a fixed topology provided by FastTree 2 (i.e., no tree search), the resulting phylogenies had accuracies that were indistinguishable from their original counterparts, but with a fraction of the runtime. Our results indicate that an ideal workflow for viral phylogenetic inference is to (1) use MAFFT to perform MSA, (2) use FastTree 2 under the GTR model with discrete gamma-distributed site-rate heterogeneity to quickly obtain a reasonable tree topology, and (3) use RAxML-NG to optimize branch lengths along the fixed FastTree 2 topology.


2019 ◽  
Author(s):  
Ivo Baar ◽  
Lukas Hübner ◽  
Peter Oettig ◽  
Adrian Zapletal ◽  
Sebastian Schlag ◽  
...  

AbstractThe so-called site repeats (SR) technique can be used to accelerate the widely-used phylogenetic likelihood function (PLF) by identifying identical patterns among multiple sequence alignment (MSA) sites, thereby omitting redundant calculations and saving memory. However, this complicates the optimal data distribution of MSA sites in parallel likelihood calculations, as the cost of computing the likelihood for individual sites strongly depends on the sites-to-cores assignment. We show that finding a ‘good’ sites-to-cores assignment can be modeled as a hypergraph partitioning problem, more specifically, a specific instance of the so-called judicious hypergraph partitioning problem. We initially develop, parallelize, and make available HyperPhylo, an efficient open-source implementation for this flavor of judicious partitioning where all vertices have the same degree. Using empirical MSA data, we then show that sites-to-core assignments computed via HyperPhylo are substantially better than those obtained via a previous na ï ve approach for phylogenetic data distribution under SRs.


Author(s):  
Jacob L. Steenwyk ◽  
Thomas J. Buida ◽  
Yuanning Li ◽  
Xing-Xing Shen ◽  
Antonis Rokas

AbstractHighly divergent sites in multiple sequence alignments, which stem from erroneous inference of homology and saturation of substitutions, are thought to negatively impact phylogenetic inference. Trimming methods aim to remove these sites before phylogenetic inference, but recent analysis suggests that doing so can worsen inference. We introduce ClipKIT, a trimming method that instead aims to retain phylogenetically-informative sites; phylogenetic inference using ClipKIT-trimmed alignments is accurate, robust, and time-saving.


2021 ◽  
Vol 17 (10) ◽  
pp. e1008950
Author(s):  
Vladimir Smirnov

Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence data, as few methods can handle large datasets while maintaining alignment accuracy. We recently introduced MAGUS, a new state-of-the-art method for aligning large numbers of sequences. In this paper, we present a comprehensive set of enhancements that allow MAGUS to align vastly larger datasets with greater speed. We compare MAGUS to other leading alignment methods on datasets of up to one million sequences. Our results demonstrate the advantages of MAGUS over other alignment software in both accuracy and speed. MAGUS is freely available in open-source form at https://github.com/vlasmirnov/MAGUS.


PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3001007
Author(s):  
Jacob L. Steenwyk ◽  
Thomas J. Buida ◽  
Yuanning Li ◽  
Xing-Xing Shen ◽  
Antonis Rokas

Highly divergent sites in multiple sequence alignments (MSAs), which can stem from erroneous inference of homology and saturation of substitutions, are thought to negatively impact phylogenetic inference. Thus, several different trimming strategies have been developed for identifying and removing these sites prior to phylogenetic inference. However, a recent study reported that doing so can worsen inference, underscoring the need for alternative alignment trimming strategies. Here, we introduce ClipKIT, an alignment trimming software that, rather than identifying and removing putatively phylogenetically uninformative sites, instead aims to identify and retain parsimony-informative sites, which are known to be phylogenetically informative. To test the efficacy of ClipKIT, we examined the accuracy and support of phylogenies inferred from 14 different alignment trimming strategies, including those implemented in ClipKIT, across nearly 140,000 alignments from a broad sampling of evolutionary histories. Phylogenies inferred from ClipKIT-trimmed alignments are accurate, robust, and time saving. Furthermore, ClipKIT consistently outperformed other trimming methods across diverse datasets, suggesting that strategies based on identifying and retaining parsimony-informative sites provide a robust framework for alignment trimming.


2021 ◽  
Author(s):  
Vladimir Smirnov

Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence data, as few methods can handle large datasets while maintaining alignment accuracy. We recently introduced MAGUS, a new state-of-the-art method for aligning large numbers of sequences. In this paper, we present a comprehensive set of enhancements that allow MAGUS to align vastly larger datasets with greater speed. We compare MAGUS to other leading alignment methods on datasets of up to one million sequences. Our results demonstrate the advantages of MAGUS over other alignment software in both accuracy and speed. MAGUS is freely available in open-source form at https://github.com/vlasmirnov/MAGUS.


Sign in / Sign up

Export Citation Format

Share Document