multiple sequence alignment
Recently Published Documents


TOTAL DOCUMENTS

912
(FIVE YEARS 147)

H-INDEX

70
(FIVE YEARS 5)

2022 ◽  
pp. 47-53
Author(s):  
Mohammad Yaseen Sofi ◽  
Afshana Shafi ◽  
Khalid Z. Masoodi

2022 ◽  
pp. 55-73
Author(s):  
Mohammad Yaseen Sofi ◽  
Afshana Shafi ◽  
Khalid Z. Masoodi

2021 ◽  
Author(s):  
Yunda Si ◽  
Chengfei Yan

AlphaFold2 is expected to be able to predict protein complex structures as long as a multiple sequence alignment (MSA) of the interologs of the target protein-protein interaction (PPI) can be provided. However, preparing the MSA of protein-protein interologs is a non-trivial task. In this study, a simplified phylogeny-based approach was applied to generate the MSA of interologs, which was then used as the input of AlphaFold2 for protein complex structure prediction. Extensively benchmarked this protocol on non-redundant PPI dataset, we show complex structures of 79.5% of the bacterial PPIs and 49.8% of the eukaryotic PPIs can be successfully predicted. Considering PPIs may not be conserved in species with long evolutionary distances, we further restricted interologs in the MSA to different taxonomic ranks of the species of the target PPI in protein complex structure prediction. We found the success rates can be increased to 87.9% for the bacterial PPIs and 56.3% of the eukaryotic PPIs if interologs in the MSA are restricted to a specific taxonomic rank of the species of each target PPI. Finally, we show the optimal taxonomic ranks for protein complex structure prediction can be selected with the application of the predicted TM-scores of the output models.


2021 ◽  
Author(s):  
Liang Hong ◽  
Siqi Sun ◽  
Liangzhen Zheng ◽  
Qingxiong Tan ◽  
Yu Li

Evolutionarily related sequences provide information for the protein structure and function. Multiple sequence alignment, which includes homolog searching from large databases and sequence alignment, is efficient to dig out the information and assist protein structure and function prediction, whose efficiency has been proved by AlphaFold. Despite the existing tools for multiple sequence alignment, searching homologs from the entire UniProt is still time-consuming. Considering the success of AlphaFold, foreseeably, large- scale multiple sequence alignments against massive databases will be a trend in the field. It is very desirable to accelerate this step. Here, we propose a novel method, fastMSA, to improve the speed significantly. Our idea is orthogonal to all the previous accelerating methods. Taking advantage of the protein language model based on BERT, we propose a novel dual encoder architecture that can embed the protein sequences into a low-dimension space and filter the unrelated sequences efficiently before running BLAST. Extensive experimental results suggest that we can recall most of the homologs with a 34-fold speed-up. Moreover, our method is compatible with the downstream tasks, such as structure prediction using AlphaFold. Using multiple sequence alignments generated from our method, we have little performance compromise on the protein structure prediction with much less running time. fastMSA will effectively assist protein sequence, structure, and function analysis based on homologs and multiple sequence alignment.


2021 ◽  
Author(s):  
Richard A Stein ◽  
Hassane Mchaourab

The unprecedented performance of Deepmind's Alphafold2 in predicting protein structure in CASP XIV and the creation of a database of structures for multiple proteomes is reshaping structural biology. Moreover, the availability of Alphafold2's architecture and code has stimulated a number of questions on how to harness the capabilities of this remarkable tool. A question of central importance is whether Alphafold2's architecture is amenable to predict the intrinsic conformational heterogeneity of proteins. A general approach presented here builds on a simple manipulation of the multiple sequence alignment, via in silico mutagenesis, and subsequent modeling by Alphafold2. The approach is based in the concept that the multiple sequence alignment encodes for the structural heterogeneity, thus its rational manipulation will enable Alphafold2 to sample alternate conformations and potentially structural alterations due to point mutations. This modeling pipeline is benchmarked against canonical examples of protein conformational flexibility and applied to interrogate the conformational landscape of membrane proteins. This work broadens the applicability of Alphafold2 by generating multiple protein conformations to be tested biologically, biochemically, biophysically, and for use in structure-based drug design.


2021 ◽  
Author(s):  
Chiann-Ling Cindy Yeh ◽  
Clara J. Amorosi ◽  
Soyeon Showman ◽  
Maitreya J. Dunham

Motivation: Use of PacBio sequencing for characterizing barcoded libraries of genetic variants is on the rise. PacBio sequencing is useful in linking variant alleles in a library with their associated barcode tag. However, current approaches in resolving PacBio sequencing artifacts can result in a high number of incorrectly identified or unusable reads. Results: We developed a PacBio Read Alignment Tool (PacRAT) that improves the accuracy of barcode-variant mapping through several steps of read alignment and consensus calling. To quantify the performance of our approach, we simulated PacBio reads from eight variant libraries of various lengths and showed that PacRAT improves the accuracy in pairing barcodes and variants across these libraries. Analysis of real (non-simulated) libraries also showed an increase in the number of reads that can be used for downstream analyses when using PacRAT. Availability and Implementation: PacRAT is written in Python and is freely available on Github (https://github.com/dunhamlab/PacRAT).


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Massimo Maiolo ◽  
Lorenzo Gatti ◽  
Diego Frei ◽  
Tiziano Leidi ◽  
Manuel Gil ◽  
...  

Abstract Background Current alignment tools typically lack an explicit model of indel evolution, leading to artificially short inferred alignments (i.e., over-alignment) due to inconsistencies between the indel history and the phylogeny relating the input sequences. Results We present a new progressive multiple sequence alignment tool ProPIP. The process of insertions and deletions is described using an explicit evolutionary model—the Poisson Indel Process or PIP. The method is based on dynamic programming and is implemented in a frequentist framework. The source code can be compiled on Linux, macOS and Microsoft Windows platforms. The algorithm is implemented in C++ as standalone program. The source code is freely available on GitHub at https://github.com/acg-team/ProPIP and is distributed under the terms of the GNU GPL v3 license. Conclusions The use of an explicit indel evolution model allows to avoid over-alignment, to infer gaps in a phylogenetically consistent way and to make inferences about the rates of insertions and deletions. Instead of the arbitrary gap penalties, the parameters used by ProPIP are the insertion and deletion rates, which have biological interpretation and are contextualized in a probabilistic environment. As a result, indel rate settings may be optimised in order to infer phylogenetically meaningful gap patterns.


2021 ◽  
Vol 17 (10) ◽  
pp. e1008950
Author(s):  
Vladimir Smirnov

Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence data, as few methods can handle large datasets while maintaining alignment accuracy. We recently introduced MAGUS, a new state-of-the-art method for aligning large numbers of sequences. In this paper, we present a comprehensive set of enhancements that allow MAGUS to align vastly larger datasets with greater speed. We compare MAGUS to other leading alignment methods on datasets of up to one million sequences. Our results demonstrate the advantages of MAGUS over other alignment software in both accuracy and speed. MAGUS is freely available in open-source form at https://github.com/vlasmirnov/MAGUS.


This paper presents a strategy to tackle the Multiple Sequence Alignment (MSA) problem, which is one of the most important tasks in the biological sequence analysis. Its role is to align the sequences in their entirety to derive relationships and common characteristics between a set of protein or nucleotide sequences. The MSA problem was proved to be an NP-Hard problem. The proposed strategy incorporates a new idea based on the well-known divide and conquer paradigm. This paper presents a novel method of clustering sequences as a preliminary step to improve the final alignment; this decomposition can be used as an optimization procedure with any MSA aligner to explore promising alignments of the search space. In their solution, authors proposed to align the clusters in a parallel and distributed way in order to benefit from parallel architectures. The strategy was tested using classical benchmarks like BAliBASE, Sabre, Prefab4 and Oxm, and the experimental results show that it gives good results by comparing to the other aligners.


Author(s):  
Rabah Lebsir ◽  
Abdesslem Layeb ◽  
Tahi Fariza

This paper presents a strategy to tackle the Multiple Sequence Alignment (MSA) problem, which is one of the most important tasks in the biological sequence analysis. Its role is to align the sequences in their entirety to derive relationships and common characteristics between a set of protein or nucleotide sequences. The MSA problem was proved to be an NP-Hard problem. The proposed strategy incorporates a new idea based on the well-known divide and conquer paradigm. This paper presents a novel method of clustering sequences as a preliminary step to improve the final alignment; this decomposition can be used as an optimization procedure with any MSA aligner to explore promising alignments of the search space. In their solution, authors proposed to align the clusters in a parallel and distributed way in order to benefit from parallel architectures. The strategy was tested using classical benchmarks like BAliBASE, Sabre, Prefab4 and Oxm, and the experimental results show that it gives good results by comparing to the other aligners.


Sign in / Sign up

Export Citation Format

Share Document