A nutrient injection scheme for in situ bio-remediation

2012 ◽  
Vol 47 (2) ◽  
pp. 280-288 ◽  
Author(s):  
C. H. Lin ◽  
M. C. Tom Kuo ◽  
C. Y. Su ◽  
K. F. Liang ◽  
Y. L. Han
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Peike Gao ◽  
Hongbo Wang ◽  
Guanxi Li ◽  
Ting Ma

With the development of molecular ecology, increasing low-abundance microbial populations were detected in oil reservoirs. However, our knowledge about the oil recovery potential of these populations is lacking. In this study, the oil recovery potential of low-abundance Dietzia that accounts for less than 0.5% in microbial communities of a water-flooding oil reservoir was investigated. On the one hand, Dietzia sp. strain ZQ-4 was isolated from the water-flooding reservoir, and the oil recovery potential was evaluated from the perspective of metabolisms and oil-displacing test. On the other hand, the strain has alkane hydroxylase genes alkB and P450 CYP153 and can degrade hydrocarbons and produce surfactants. The core-flooding test indicated that displacing fluid with 2% ZQ-4 fermentation broth increased 18.82% oil displacement efficiency, and in situ fermentation of ZQ-4 increased 1.97% oil displacement efficiency. Furthermore, the responses of Dietzia in the reservoir accompanied by the nutrient stimulation process was investigated and showed that Dietzia in some oil production wells significantly increased in the initial phase of nutrient injection and sharply decreased along with the continuous nutrient injection. Overall, this study indicates that Dietzia sp. strain has application potential for enhancing oil recovery through an ex situ way, yet the ability of oil recovery in situ based on nutrient injection is limited.


2013 ◽  
Vol 48 (9) ◽  
pp. 1079-1085
Author(s):  
C. S. Liu ◽  
M. C. Tom Kuo ◽  
C. Y. Su ◽  
Y. C. Chen ◽  
W. C. Cheng ◽  
...  
Keyword(s):  

1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document