Improving stream low flow regimes in urbanised catchments using water sensitive urban design techniques

2008 ◽  
Vol 12 (2) ◽  
pp. 121-132 ◽  
Author(s):  
A Lee ◽  
G Hewa ◽  
D Pezzaniti ◽  
J R Argue
2015 ◽  
Vol 73 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Chathurika Subhashini Wella-Hewage ◽  
Guna Alankarage Hewa ◽  
David Pezzaniti

Increased stormwater runoff and pollutant loads due to catchment urbanisation bring inevitable impacts on the physical and ecological conditions of environmentally sensitive urban streams. Water sensitive urban design (WSUD) has been recognised as a possible means to minimise these negative impacts. This paper reports on a study that investigated the ability of infiltration-based WSUD systems to replicate the predevelopment channel-forming flow (CFF) regime in urban catchments. Catchment models were developed for the ‘pre-urban’, ‘urban’ and ‘managed’ conditions of a case study catchment and the hydrological effect on CFF regime was investigated using a number of flow indices. The results clearly show that changes to flow regime are apparent under urban catchment conditions and are even more severe under highly urbanised conditions. The use of WSUD systems was found to result in the replication of predevelopment flow regimes, particularly at low levels of urbanisation. Under highly urbanised conditions (of managed catchments) overcontrol of the CFF indices was observed as indicated by flow statistics below their pre-urban values. The overall results suggest that WSUD systems are highly effective in replicating the predevelopment CFF regime in urban streams and could be used as a means to protect environmentally sensitive urban streams.


Urban Science ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Hadi Zamanifard ◽  
Edward A. Morgan ◽  
Wade L. Hadwen

Modern stormwater treatment assets are a form of water sensitive urban design (WSUD) features that aim to reduce the volumes of sediment, nutrients and gross pollutants discharged into receiving waterways. Local governments and developers in urban areas are installing and maintaining a large number of stormwater treatment assets, with the aim of improving urban runoff water quality. Many of these assets take up significant urban space and are highly visible and as a result, community acceptance is essential for effective WSUD design and implementation. However, community perceptions and knowledge about these assets have not been widely studied. This study used a survey to investigate community perceptions and knowledge about stormwater treatment assets in Brisbane, Australia. The results suggest that there is limited community knowledge of these assets, but that communities notice them and value their natural features when well-maintained. This study suggests that local governments may be able to better inform residents about the importance of these assets, and that designing for multiple purposes may improve community acceptance and support for the use of Council funds to maintain them.


2016 ◽  
Vol 73 (9) ◽  
pp. 2251-2259 ◽  
Author(s):  
J. U. Hasse ◽  
D. E. Weingaertner

As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) ‘dynaklim – Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)’, the Roadmap 2020 ‘Regional Climate Adaptation’ has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap ‘Water Sensitive Urban Design 2020’. With a focus on the process support tool ‘KlimaFLEX’, one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.


Author(s):  
Shinyi Lee ◽  
Tan Yigitcanlar

Stormwater has been recognised as one of the main culprits of aquatic ecosystem pollution and as a significant threat to the goal of ecological sustainable development. Water sensitive urban design is one of the key responses to the need to better manage urban stormwater runoff, the objectives of which go beyond rapid and efficient conveyance. Underpinned by the concepts of sustainable urban development, water sensitive urban design has proven to be an efficient and environmentally-friendly approach to urban stormwater management, with the necessary technical know-how and skills already available. However, large-scale implementation of water sensitive urban design is still lacking in Australia due to significant impediments and negative perceptions. Identification of the issues, barriers and drivers that affect sustainability outcomes of urban stormwater management is one of the first steps towards encouraging the wide-scale uptake of water sensitive urban design features which integrate sustainable urban stormwater management. This chapter investigates key water sensitive urban design perceptions, drivers and barriers in order to improve sustainable urban stormwater management efforts.


2021 ◽  
Vol 26 (2) ◽  
pp. 183-193
Author(s):  
Desyta Ulfiana ◽  
Yudi Eko Windarto ◽  
Nurhadi Bashit ◽  
Novia Sari Ristianti

Klaten Regency is one of the regions that has a high level of flood vulnerability. The area of Klaten Regency which is huge and has diverse characteristics makes it difficult to determine an appropriate flood management model. Water Sensitive Urban Design (WSUD) is a model that focuses on handling water management problems with environmentally friendly infrastructure. Therefore, an analysis is carried out to determine the level of flood vulnerability and factors causing flooding to plan a WSUD design that is suitable for each sub-districts of Klaten Regency. The Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods are used to help the analysis. Aspects used as criteria are rainfall, slope, soil type, geological conditions, and land use. Based on the analysis, it could be concluded that Klaten Regency has two sub-districts with high flood hazard category, 21 sub-districts with medium category, and three sub-districts with low category. Bayat and Cawas are sub-districts that have a high level of flood vulnerability category. Meanwhile, Kemalang, Karangnongko and Polanharjo are districts with a low level of flood vulnerability category. The main factors causing flooding in Klaten Regency are slope and land use.


Sign in / Sign up

Export Citation Format

Share Document