low impact development
Recently Published Documents


TOTAL DOCUMENTS

824
(FIVE YEARS 317)

H-INDEX

32
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Fahad Ahmed ◽  
Shashwat Sharma ◽  
Loc Ho ◽  
Ming Chow

Rapid urbanization in the Global South exacerbates urban water management challenges such as urban flooding and water pollution, rendering many areas water-insecure. Our reliance on grey infrastructures to combat these water management challenges is not sustainable in the long run, due to which a better alternative must be sought. Nature-based Solution (NBS) promote ecosystem services and enhance climate resiliency along with flood control and improvement of water quality by utilizing natural elements including green spaces and water bodies within the urban environment. In the past few decades, NBS have been adapted for urban drainage in Global North and evolved by means of various terms based on geographic location, practices and applications. Some of these well-known terms include Low Impact Development (LIDs), Sustainable Urban Drainage Systems (SUDS), Water Sensitive Urban Design (WSUD) and Best Management Practices (BMPs). The transition towards a resilient and sustainable environment has been made possible through the application of NBS. Recently, countries in the Global South such as Singapore, Malaysia, Vietnam, and Thailand are trying to alter urban storm water management strategies through conversion of grey infrastructure to green infrastructure by employing various NBS techniques. The findings of this study show how NBS has influenced the Global South’s urban water management.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 238
Author(s):  
Aline Rech ◽  
Elisa Pacheco ◽  
Jakcemara Caprario ◽  
Julio Cesar Rech ◽  
Alexandra Rodrigues Finotti

The control of runoff pollution is one of the advantages of low-impact development (LID) or sustainable drainage systems (SUDs), such as infiltration swales. Coastal areas may have characteristics that make the implementation of drainage systems difficult, such as sandy soils, shallow aquifers and flat terrains. The presence of contaminants was investigated through sampling and analysis of runoff, soil, and groundwater from a coastal region served by an infiltration swale located in southern Brazil. The swale proved to be very efficient in controlling the site’s urban drainage volumes even under intense tropical rainfall. Contaminants of Cd, Cu, Pb, Zn, Cr, Fe, Mn and Ni were identified at concentrations above the Brazilian regulatory limit (BRL) in both runoff and groundwater. Soil concentrations were low and within the regulatory limits, except for Cd. The soil was predominantly sandy, with neutral pH and low ionic exchange capacity, characteristic of coastal regions and not very suitable for contaminant retention. Thus, this kind of structure requires improvements for its use in similar environments, such as the use of adsorbents in soil swale to increase its retention capacity.


2022 ◽  
Vol 3 ◽  
Author(s):  
Michael B. Tchintcharauli-Harrison ◽  
Mary V. Santelmann ◽  
Hattie Greydanus ◽  
Omar Shehab ◽  
Maria Wright

We used the EPA SWMM-5. 1 model to evaluate the relative impact of neighborhood design and constructed Low Impact Development (LID) features on infiltration, evaporation, and runoff for three future scenarios. In the Current Course (CC) future, current regulations and policies remain in place under lower rates of climate change and population growth. In the Stressed Resources (SR) future, rapid rates of population growth and climate change stress water systems, and conventional development patterns and management actions fail to keep pace with a changing environment. In the Integrated Water (IW) future, with the same rapid rates of climate change and population growth as the SR future, informed water management anticipates and adapts to expected changes. The IW scenario retains public open space, extensive use of constructed LID features, and has the lowest proportion of impervious surface. Neighborhood designs varied in the number of dwelling units, density of development, and spatial extent of nature-based solutions and constructed LID features used for stormwater management. We compared the scenarios using SWMM-5.1 for a set of NRCS Type 1a design storms (2-yr, 25-yr, 20% increase over 25-yr, 30% increase over 25-yr) with precipitation input at 6-min time steps as well as a set of 10-year continuous runs. Results illustrate the importance of neighborhood design in urban hydrology. The design with the highest proportion of impervious surface (SR future) produced runoff of up to 45–50% of precipitation for all variations of the 25-year storm, compared to 34–44 and 23–39% for the CC and IW futures, respectively. Evaporation accounted for only 2–3% of precipitation in the 25-year design storm simulations for any scenario. Results of continuous 10-year simulations were similar to the results of design storms. The proportion of precipitation that became runoff was highest in the SR future (33%), intermediate in the CC (16%), and lowest in the IW future (9%). Evaporation accounted for 6, 11, and 14 of precipitation in the SR, CC, and IW futures with LID, respectively. Infiltration was higher in scenarios with LID than for the same scenario without LID, and varied with the extent of LID employed, accounting for 59, 71, and 74% of precipitation in the SR, CC, and IW scenarios with LID. In addition to differences in performance for stormwater management, the alternative scenarios also provide different sets of co-benefits. The IW and SR future designs both provide more housing than the CC, and the IW future has the lowest cost of development per dwelling unit.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 78
Author(s):  
Yangyang Yuan ◽  
Yu Gan ◽  
Yuhan Xu ◽  
Qining Xie ◽  
Yuqing Shen ◽  
...  

The types of urban mountains are diverse, and the surrounding environment is complex. The conditions of runoff generation and convergence in different regions of the same mountain vary. Using the Lijia Mountain in China’s Nanjing City as a case study, this study investigates the effects of such mountain-region-based LID (Low Impact Development) systems. Based on the hydrological analysis of this mountain region, SWMM (Storm Water Management Model) software is used to model and compare the runoff control effects of two LID systems schemes, namely segmental detention and retention and terminal detention and retention. The study’s findings demonstrate that the terminal detention and retention scheme can effectively delay the time of peak flooding and partly reduce peak discharge. In contrast, the segmental detention and retention scheme has a limited delay effect on flood peaks but significantly reduces the peak discharge. This research breaks through the limitations of the previous construction of a single LID scheme for mountainous regions in built-up urban areas. It serves as a theoretical model and technical reference for selecting LID scenarios in response to different mountain conditions.


2022 ◽  
Vol 805 ◽  
pp. 150404
Author(s):  
Gongduan Fan ◽  
Ruisheng Lin ◽  
Zhongqing Wei ◽  
Yougan Xiao ◽  
Haidong Shangguan ◽  
...  

2021 ◽  
Vol 21 (6) ◽  
pp. 209-215
Author(s):  
Yunje Lee ◽  
Jaehun Ahn ◽  
Yungtak Oh ◽  
Jaegeon Lee

The expansion of impervious areas owing to urbanization has adverse effects on water circulation. The application of low-impact development techniques to solve these problems is gaining popularity. Among others, Permeable pavements are the most widely employed low-impact development techniques. In this study, the dynamic modulus and tensile strength of pervious polymer concrete pavement were evaluated before and after freezing-thawing cycles. A tensile strength test, performed to check the soundness of the pervious polymer concrete, yielded a tensile strength and tensile strength ratio of 0.66 to 0.96 MPa, and 72 to 83%, respectively. The ultrasonic pulse velocity was measured to determine the dynamic modulus according to the freezing-thawing cycles. When 300 freezing-thawing cycles were performed, the dynamic modulus was analyzed to drop to a level of 77~85% of the initial value. The standards for freezing and thawing tests of pervious concrete have not yet been established. It is necessary to develop test standards for freezing-thawing resistance of pervious concretes considering climate change.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3635
Author(s):  
Roberta D’Ambrosio ◽  
Antonia Longobardi ◽  
Alessandro Balbo ◽  
Anacleto Rizzo

Urban sprawl and soil sealing has gradually led to an impervious surface increase with consequences on the enhancement of flooding risk. During the last decades, a hybrid approach involving both traditional storm water detention tanks (SWDTs) and low-impact development (LID) has resulted in the best solution to manage urban flooding and to improve city resilience. This research aimed at a modeling comparison between drainage scenarios involving the mentioned hybrid approach (H-SM), with (de)centralized LID supporting SWDTs, and a scenario representative of the centralized approach only involving SWDTs (C-SM). Results highlighted that the implementation of H-SM approaches could be a great opportunity to reduce SWDTs volumes. However, the performances varied according to the typology of implemented LID, their parameterization with specific reference to the draining time, and the rainfall severity. Overall, with the increase of rainfall severity and the decrease of draining time, a decrease of retention performances can be observed with SWDTs volume reductions moving from 100% to 28%. In addition, without expecting to implement multicriteria techniques, a preliminary cost analysis pointed out that the larger investment effort of the (de)centralized LID could be, in specific cases, overtaken by the cost advantages resulting from the reduction of the SWDTs volumes.


Sign in / Sign up

Export Citation Format

Share Document